과제정보
This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2018R1A2A2A05018524 and No. 2019R1A4A1021702).
참고문헌
- ACI 318-14 (2014), ACI 318-14 - Building Code Requirements for Structural Concrete
- Ahmed, M. and Liang, Q.Q. (2020), "Computational simulation of elliptical concrete-filled steel tubular short columns including new confinement model", J. Constr. Steel Res., 174, 106294. https://doi.org/10.1016/j.jcsr.2020.106294.
- AISC (2016), Specification for Structural Steel Buildings, ANSI / AISC 360-16. Am Inst Steel Constr 676
- ACI 318-14 (2014), ACI 318-14 - Building Code Requirements for Structural Concrete.
- Ahmed, M. and Liang, Q.Q. (2020), "Computational simulation of elliptical concrete-filled steel tubular short columns including new confinement model", J. Constr. Steel Res., 174, 106294. https://doi.org/10.1016/j.jcsr.2020.106294.
- AISC (2016), Specification for Structural Steel Buildings, ANSI / AISC 360-16. Am Inst Steel Constr 676
- Albuquerque, J.S., et al. (1997), "Interior point SQP strategies for structured process optimization problems", Comput. Chem. Eng., 21, 853-859. https://doi.org/10.1016/s0098-1354(97)87609-0.
- Andrei, N. (2017), Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology.
- Apostolopoulou, M., et al. (2020), "On the metaheuristic models for the prediction of cement- metakaolin mortars compressive strength", Metaheuristic Comput. Appl., 1, 63-99.
- Ardakani, A., Dinarvand, R. and Namaei, A. (2020), "Ultimate Shear Resistance of Silty Sands Improved by Stone Columns Estimation Using Neural Network and Imperialist Competitive Algorithm", Geotech. Geol. Eng., 38, 1485-1496. https://doi.org/10.1007/s10706-019-01104-8.
- Armaghani, D.J. and Asteris, P.G. (2020), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Springer London.
- Armaghani, D.J., et al. (2019), "Soft computing-based techniques for concrete beams shear strength", Procedia Struct. Integr., 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.
- Arora, R.K. (2016), Optimization: algorithms and applications.
- AS 5100-6 (2004), Australian Standard 5100-6: Bridge Design, Steel and composite construction. 04:269.
- Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Moropoulou, A. (2019), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24(4), 329-345. https://doi.org/10.12989/cac.2019.24.4.329.
- Asteris, P.G. and Mokos, V.G. (2019), "Concrete compressive strength using artificial neural networks", Neural Comput. Appl., 2. https://doi.org/10.1007/s00521-019-04663-2.
- Boggs, P.T. and Tolle, J.W. (1995), "Sequential Quadratic Programming", Acta Numer., 4, 1-51. https://doi.org/10.1017/S0962492900002518.
- Chan, T.M., Gardner, L. and Law, K.H. (2010), "Structural design of elliptical hollow sections: A review", Proc. Inst. Civ. Eng. Struct. Build., 163, 391-402. https://doi.org/10.1680/stbu.2010.163.6.391.
- Chan, T.M., Huai, Y.M. and Wang, W. (2015), "Experimental investigation on lightweight concrete-filled cold-formed elliptical hollow section stub columns", J. Constr. Steel Res., 115, 434-444. https://doi.org/10.1016/j.jcsr.2015.08.029.
- Chen, H., et al. (2019), "Assessing dynamic conditions of the retaining wall: Developing two hybrid intelligent models", Appl. Sci., 9, https://doi.org/10.3390/app9061042.
- Chen, X.L., Fu, J.P., Yao, J.L. and Gan, J.F. (2018), "Prediction of shear strength for squat RC walls using a hybrid ANN-PSO model", Eng. Comput., 34, 367-383. https://doi.org/10.1007/s00366-017-0547-5.
- Dai, X. and Lam, D. (2010a), "Axial compressive behaviour of stub concrete-filled columns with elliptical stainless steel hollow sections", Steel Compos. Struct., 10(6), 517-539. https://doi.org/10.12989/scs.2010.10.6.517.
- Dai, X. and Lam, D. (2010b), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Constr. Steel Res., 66, 931-942. https://doi.org/10.1016/j.jcsr.2010.02.003.
- Dai, X.H., Lam, D., Jamaluddin, N. and Ye, J. (2014), "Numerical analysis of slender elliptical concrete filled columns under axial compression", Thin-Wall. Struct., 77, 26-35. https://doi.org/10.1016/j.tws.2013.11.015.
- Degtyarev, V.V. (2020), "Neural networks for predicting shear strength of CFS channels with slotted webs", J. Constr. Steel Res., 106443. https://doi.org/10.1016/j.jcsr.2020.106443.
- Devikanniga, D., Vetrivel, K. and Badrinath, N. (2019), "Review of meta-heuristic optimization based artificial neural networks and its applications", J. Phys. Conf. Ser., 1362, https://doi.org/10.1088/1742-6596/1362/1/012074.
- Ding, F.X., Yu, Z.W., Bai, Y, and Gong, Y.Z. (2011), "Elastoplastic analysis of circular concrete-filled steel tube stub columns", J. Constr. Steel Res., 67, 1567-1577. https://doi.org/10.1016/j.jcsr.2011.04.001.
- Duan, J., Asteris, P/G., Nguyen, H. and Bui, X.N. (2020), A novel artifcial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model.pdf.
- Elbaz, K., et al. (2019), "Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm", Appl. Sci., 9, 1-17. https://doi.org/10.3390/app9040780.
- Espinos, A., Gardner, L., Romero, M.L. and Hospitaler, A. (2011), "Fire behaviour of concrete filled elliptical steel columns", Thin-Wall. Struct., 49, 239-255. https://doi.org/10.1016/j.tws.2010.10.008.
- Eurocode-4 (2011), Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings. The European Union.
- Giorgi, G. and Kjeldsen, T.H. (2014), "Traces and emergence of nonlinear programming", Traces Emerg Nonlinear Program, 1-434. https://doi.org/10.1007/978-3-0348-0439-4.
- Guo, K. and Yang, G. (2020), "Load - slip curves of shear connection in composite structures : prediction based on ANNs", Steel Compos. Struct., 36(5), 493-506. https://doi.org/10.12989/scs.2020.36.5.493.
- Hasanipanah, M., Noorian-Bidgoli, M., Jahed Armaghani, D. and Khamesi, H. (2016), "Feasibility of PSO-ANN model for predicting surface settlement caused by tunneling", Eng. Comput., 32, 705-715. https://doi.org/10.1007/s00366-016-0447-0.
- Hassanein, M.F., et al. (2018), "Structural behaviour and design of elliptical high-strength concrete-filled steel tubular short compression members", Eng. Struct., 173, 495-511. https://doi.org/10.1016/j.engstruct.2018.07.023.
- Jamaluddin, N., Lam, D., Dai, X.H. and Ye, J. (2013), "An experimental study on elliptical concrete filled columns under axial compression", J. Constr. Steel Res., 87, 6-16. https://doi.org/10.1016/j.jcsr.2013.04.002.
- Karina, C.N.N., Chun, P. and Okubo, K. (2017), "Tensile strength prediction of corroded steel plates by using machine learning approach", Steel Compos. Struct., 24(5), 635-641. https://doi.org/10.12989/scs.2017.24.5.635.
- Kojima, M., Megiddo, N. and Mizuno, S. (1993), "A primal-dual infeasible-interior-point algorithm for linear programming", Math. Program, 61, 263-280. https://doi.org/10.1007/BF01582151.
- Koopialipoor, M., et al. (2020), "Development of a new hybrid ANN for solving a geotechnical problem related to tunnel boring machine performance", Eng. Comput., 36, 345-357. https://doi.org/10.1007/s00366-019-00701-8.
- Koopialipoor, M., et al. (2019), "Developing a new intelligent technique to predict overbreak in tunnels using an artificial bee colony-based ANN", Environ. Earth Sci., 78, https://doi.org/10.1007/s12665-019-8163-x.
- Kwon, S.J. (2011), Artificial neural networks
- Lam, D., Gardner, L. and Burdett, M. (2010), "Behaviour of axially loaded concrete filled stainless steel elliptical stub columns", Adv. Struct. Eng., 13, 493-500. https://doi.org/10.1260/1369-4332.13.3.493.
- Le, T.T. (2020), "Surrogate neural network model for prediction of load-bearing capacity of cfss members considering loading eccentricity", Appl. Sci., 10. https://doi.org/10.3390/app10103452.
- Liu, A., et al. (2020a), "Prediction of mechanical properties of micro-alloyed steels via neural networks learned by water wave optimization", Neural Comput. Appl., 32, 5583-5598. https://doi.org/10.1007/s00521-019-04149-1.
- Liu, F., Wang, Y. and Chan, T.M. (2017), "Behaviour of concrete-filled cold-formed elliptical hollow sections with varying aspect ratios", Thin-Wall. Struct., 110, 47-61. https://doi.org/10.1016/j.tws.2016.10.013.
- Liu, L., et al. (2020b), "Optimizing an ANN model with genetic algorithm (GA) predicting load-settlement behaviours of eco-friendly raft-pile foundation (ERP) system", Eng. Comput., 36, 421-433. https://doi.org/10.1007/s00366-019-00767-4.
- Liu, X. and Zha, X. (2011), Study on Behavior of Elliptical Concrete Filled Steel Tube Members I:Stub and Long Columns under Axial Compression. Prog Steel Build Struct.
- Ly, H.B., et al. (2020), "Estimation of axial load-carrying capacity of concrete-filled steel tubes using surrogate models", Neural Comput. Appl., 0123456789: https://doi.org/10.1007/s00521-020-05214-w.
- Mahgub, M., Ashour, A., Lam, D. and Dai, X. (2017), "Tests of self-compacting concrete filled elliptical steel tube columns", Thin-Wall. Struct., 110, 27-34. https://doi.org/10.1016/j.tws.2016.10.015.
- MATLAB (2018), MATLAB R2018b
- McCann, F., et al. (2015), Concrete-filled elliptical section steel columns under concentric and eccentric loading. https://doi.org/10.13140/RG.2.1.1257.5845
- Moayedi, H., Mu'azu, M.A. and Kok Foong, L. (2019), "Swarm-based analysis through social behavior of grey wolf optimization and genetic programming to predict friction capacity of driven piles", Eng. Comput., https://doi.org/10.1007/s00366-019-00885-z.
- Naderpour, H. and Mirrashid, M. (2020), "Proposed soft computing models for moment capacity prediction of reinforced concrete columns", Soft Comput., 8. https://doi.org/10.1007/s00500-019-04634-8
- Nguyen, D.D., et al. (2021), "A machine learning-based formulation for predicting shear capacity of squat flanged RC walls", Structures, 29, 1734-1747. https://doi.org/10.1016/j.istruc.2020.12.054.
- Nguyen, H.Q., et al. (2020a), "Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression", Materials (Basel), 13. https://doi.org/10.3390/MA13051205.
- Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020b), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415.
- Nikbin, I.M., Rahimi, S. and Allahyari, H. (2017), "A new empirical formula for prediction of fracture energy of concrete based on the artificial neural network", Eng. Fract. Mech., 186, 466-482. https://doi.org/10.1016/j.engfracmech.2017.11.010.
- Ranganathan, A. (2004), The Levenberg-Marquardt Algorithm 3 LM as a blend of Gradient descent and Gauss-Newton itera. Internet httpexcelsior cs ucsb educoursescs290ipdfL MA pdf 142:1-5.
- Ren, Q.X., Han, L.H., Lam, D. and Li, W. (2014), "Tests on elliptical concrete filled steel tubular (CFST) beams and columns", J. Constr. Steel Res., 99, 149-160. https://doi.org/10.1016/j.jcsr.2014.03.010.
- Roman, N.D., Bre, F., Fachinotti, V.D. and Lamberts, R. (2020), "Application and characterization of metamodels based on artificial neural networks for building performance simulation: A systematic review", Energy Build., 217, 109972. https://doi.org/10.1016/j.enbuild.2020.109972.
- Britto, A.S.F., Raj, R.E. and Mabel, M.C. (2018), "Prediction and optimization of mechanical strength of diffusion bonds using integrated ANN-GA approach with process variables and metallographic characteristics", J. Manuf. Process., 32, 828-838. https://doi.org/10.1016/j.jmapro.2018.04.015.
- Salehi, H. and Burgueno, R. (2018), "Emerging artificial intelligence methods in structural engineering", Eng. Struct., 171, 170-189. https://doi.org/10.1016/j.engstruct.2018.05.084.
- Shao, Z., et al. (2019), "Estimating the friction angle of black shale core specimens with hybrid-ANN approaches", Meas. J. Int. Meas. Confed., 145, 744-755. https://doi.org/10.1016/j.measurement.2019.06.007.
- Shariati, M., et al. (2020), "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Eng. Comput., https://doi.org/10.1007/s00366-019-00930-x
- Sheehan, T., Dai, X.H., Chan, T.M. and Lam, D. (2012), "Structural response of concrete-filled elliptical steel hollow sections under eccentric compression", Eng. Struct., 45, 314-323. https://doi.org/10.1016/j.engstruct.2012.06.040.
- Shen, Q.H., Wang, J.F., Wang, W. and Wang, J. (2015), "Axial Compressive Behavior and Bearing Capacity Calculation of ECFST Columns Based on Numerical Analysis", Prog. Steel Buid. Struct., https://doi.org/ 10.13969/j.cnki.cn31-1893.2015.06.009.
- Shukla, A.K., Janmaijaya, M., Abraham, A. and Muhuri, P.K. (2019), "Engineering applications of artificial intelligence: A bibliometric analysis of 30 years (1988-2018)", Eng. Appl. Artif. Intel., 85, 517-532. https://doi.org/10.1016/j.engappai.2019.06.010.
- Solati, A., Hamedi, M. and Safarabadi, M. (2019), "Combined GA-ANN approach for prediction of HAZ and bearing strength in laser drilling of GFRP composite", Opt Laser Technol., 113, 104-115. https://doi.org/10.1016/j.optlastec.2018.12.016.
- Tran, V.L., Thai, D.K. and Kim, S.E. (2019a), "Application of ANN in predicting ACC of SCFST column", Compos. Struct., 228. https://doi.org/10.1016/j.compstruct.2019.111332.
- Tran, V.L. and Kim, S.E. (2020a), "Efficiency of three advanced data-driven models for predicting axial compression capacity of CFDST columns", Thin-Wall. Struct., 152. https://doi.org/10.1016/j.tws.2020.106744.
- Tran, V.L. and Kim, S.E. (2020b), "A practical ANN model for predicting the PSS of two-way reinforced concrete slabs", Eng. Comput., https://doi.org/10.1007/s00366-020-00944-w.
- Tran, V.L., Thai, D.K. and Kim, S.E. (2019b), "A new empirical formula for prediction of the axial compression capacity of CCFT columns", Steel Compos. Struct., 33(2), 181-194. https://doi.org/10.12989/scs.2019.33.2.181.
- Tran, V.L., Thai, D.K. and Nguyen, D.D. (2020), "Practical artificial neural network tool for predicting the axial compression capacity of circular concrete-filled steel tube columns with ultra-high-strength concrete", Thin-Wall. Struct., 151. https://doi.org/10.1016/j.tws.2020.106720.
- Uenaka, K. (2014), "Experimental study on concrete filled elliptical/oval steel tubular stub columns under compression", Thin-Wall. Struct., 78, 131-137. https://doi.org/10.1016/j.tws.2014.01.023.
- Wang, J., Shen, Q., Jiang, H. and Pan, X. (2018), "Analysis and Design of Elliptical Concrete-Filled Thin-Walled Steel Stub Columns Under Axial Compression", Int. J. Steel Struct., 18, 365-380. https://doi.org/10.1007/s13296-018-0002-5.
- Xu, Y. and Yao, J. (2017), "Axial Bearing Capacity of Elliptical Concrete Filled Steel Tubular Stub Columns", IOP Conf Ser Mater Sci Eng 220. https://doi.org/10.1088/1757-899X/220/1/012002
- Yang, H., Lam, D. and Gardner, L. (2008), "Testing and analysis of concrete-filled elliptical hollow sections", Eng. Struct., 30, 3771-3781. https://doi.org/10.1016/j.engstruct.2008.07.004
- Yang, H., Liu, F., Chan, T. and Wang, W. (2017), "Behaviours of concrete-filled cold-formed elliptical hollow section beam-columns with varying aspect ratios", Thin-Wall. Struct., 120, 9-28. https://doi.org/10.1016/j.tws.2017.08.018.
- Zhang, H., et al. (2020), "Developing a novel artificial intelligence model to estimate the capital cost of mining projects using deep neural network-based ant colony optimization algorithm", Resour. Policy, 66, 101604. https://doi.org/10.1016/j.resourpol.2020.101604.
- Zhao, X.L. and Packer, J.A. (2009), "Tests and design of concrete-filled elliptical hollow section stub columns", Thin-Wall. Struct., 47, 617-628. https://doi.org/10.1016/j.tws.2008.11.004.
- Zhou, G., Moayedi, H. and Foong, L.K. (2020), "Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building", Eng. Comput., https://doi.org/10.1007/s00366-020-00981-5.
- Zorlu, K., et al. (2008), "Prediction of uniaxial compressive strength of sandstones using petrography-based models", Eng. Geol., 96, 141-158. https://doi.org/10.1016/j.enggeo.2007.10.009.
피인용 문헌
- Axial compressive behavior of circular concrete-filled double steel tubular short columns vol.25, pp.2, 2021, https://doi.org/10.1177/13694332211046345