DOI QR코드

DOI QR Code

탄소나노튜브 필름 Li Host의 Lithiophilicity가 리튬메탈배터리의 성능에 미치는 영향 연구

Effect of the Lithiophilicity of the Li Host of a Carbon Nanotube Film on the Performance of Li Metal Battery

  • 김라영 (숭실대학교 공과대학 유기신소재파이버공학과) ;
  • 김교식 (숭실대학교 공과대학 유기신소재파이버공학과) ;
  • 신명규 (숭실대학교 공과대학 유기신소재파이버공학과) ;
  • 김혜주 (숭실대학교 공과대학 유기신소재파이버공학과) ;
  • 송현준 (숭실대학교 공과대학 유기신소재파이버공학과) ;
  • 정영진 (숭실대학교 공과대학 유기신소재파이버공학과)
  • Kim, Rayoung (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Gyosik (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Shin, Myunggyu (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Haejoo (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Song, Hyeonjun (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Jeong, Youngjin (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 투고 : 2021.04.02
  • 심사 : 2021.04.15
  • 발행 : 2021.04.30

초록

Lithium (Li) has gained attention as an anode material because of its high specific capacity (3860 mAh g-1) and high energy density. However, its commercialization is limited owing to the dendrite growth on the surface of the electrode, which causes several drawbacks, such as low cycling stability, and safety issues, such as short circuits due to the penetration of the separator. Li hosts with various structures have been studied to address these problems. A 3D-scaffold structured host effectively suppresses the Li dendrite growth and improves the electrode performance. Carbon nanotube (CNT) is a promising candidate material for a Li host owing to its high surface area and excellent electrical conductivity. However, the lithiophobicity of CNT makes it difficult to utilize CNT as a Li host. In this study, we tried to improve the lithiophilicity of CNT film by direct pre-lithiation method and studied the effect of lithiophilicity on the performance of Li metal battery. Li could be uniformly plated inside the lithiophilic CNT film in contrast to lithiophobic CNT film, where it was plated unevenly on the surface. This Li plating behavior was reflected in the performance of the full cell, in which LiFePO4 (LFP) was used as a cathode. The full cell (LFP ∥ lithiophilic CNT film) exhibited remarkable cyclability owing to uniform Li plating inside lithiophilic CNT film.

키워드

과제정보

본 연구는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NO. NRF-2020R1A2C2006720).

참고문헌

  1. S. Huang, L. Tang, H. Najafabadi, S. Chen, and Z. Ren, "A Highly Flexible Semi-tubular Carbon Film for Stable Lithium Metal Anodes in High-performance Batteries", Nano Energy, 2017, 38, 504-509. https://doi.org/10.1016/j.nanoen.2017.06.030
  2. B. Dunn, H. Kamath, and J. Tarascon, "Electrical Energy Storage for the Grid: A Battery of Choices", Science, 2011, 332, 928-935. https://doi.org/10.1126/science.1207836
  3. H. Kim, G. Jeong, Y. Kim, J. Kim, C. Park, and H. Sohn, "Metallic Anodes for Next Generation Secondary Batteries", Chem. Soc. Rev., 2013, 42, 9011-9034. https://doi.org/10.1039/c3cs60177c
  4. B. Liu, J. Zhang, and W. Xu, "Advancing Lithium Metal Batteries", Joule, 2018, 2, 833-845.
  5. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J. G. Zhang, "Lithium Metal Anodes for Rechargeable Batteries", Energy Environ. Sci., 2014, 7, 513-537. https://doi.org/10.1039/C3EE40795K
  6. N. W. Li, Y. Shi, Y. X. Weng, X. X. Li, J. Y. Li, C. J. Li, L. J. Wan, R. Wen, and Y. G. Guo, "A Flexible Solid Electrolyte Interphase Layer for Long-life Lithium Metal Anodes", Angewandte Chemie, 2018, 130, 1521-1525. https://doi.org/10.1002/ange.201710806
  7. H. Yuan, X. Chen, G. Zhou, W. Zhang, J. Luo, H. Huang, Y. Gan, C. Liang, Y. Xia, J. Zhang, J. Wang, and X. Tao, "Efficient Activation of Li2S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium-sulfur Batteries", ACS Energy Letters, 2017, 2, 1711-1719. https://doi.org/10.1021/acsenergylett.7b00465
  8. M. Armand and J. Tarascon, "Building Better Batteries", Nature, 2008, 451, 652-657. https://doi.org/10.1038/451652a
  9. Q. Li, S. Zhu, and Y. Lu, "3D Porous Cu Current Collector/Li-metal Composite Anode for Stable Lithium-metal Batteries", Adv. Funct. Mater., 2017, 27, 1606422. https://doi.org/10.1002/adfm.201606422
  10. D. Lu, Y. Shao, T. Lozano, W. Bennett, G. Graff, B. Polzin, J. Zhang, M. Engelhard, N. Saenz, W. Henderson, P. Bhattacharya, J. Liu, and J. Xiao, "Failure Mechanism for Fast-charged Lithium Metal Batteries with Liquid Electrolytes", Adv. Energy Mater., 2015, 5, 1400993. https://doi.org/10.1002/aenm.201400993
  11. X. Cheng, R. Zhang, C. Zhao, and Q. Zhang, "Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review", Chem. Rev., 2017, 117, 10403-10473. https://doi.org/10.1021/acs.chemrev.7b00115
  12. Y. Liu, Q. Liu, L. Xin, Y.Liu, F. Yang, E. Stach, and J. Xie, "Making Li-metal Electrodes Rechargeable by Controlling the Dendrite Growth Direction", Nature Energy, 2017, 2, 1-10.
  13. S. Sheng, L. Sheng, L. Wang, N. Piao, and X. He, "Thickness Variation of Lithium Metal Anode with Cycling", J. Power Sources, 2020, 476, 228749.
  14. H. Yang, C. Guo, A. Naveed, J. Lei, J. Yang, Y. Nuli, and J. Wang, "Recent Progress and Perspective on Lithium Metal Anode Protection", Energy Storage Materials, 2018, 14, 199-221. https://doi.org/10.1016/j.ensm.2018.03.001
  15. C. Sun, J. Liu, Y. Gong, D. P. Wilkinson, and J. Zhang, "Recent Advances in All-solid-state Rechargeable Lithium Batteries", Nano Energy, 2017, 33, 363-386. https://doi.org/10.1016/j.nanoen.2017.01.028
  16. A. Manthiram, X. Yu, and S. Wang, "Lithium Battery Chemistries Enabled by Solid-state Electrolytes", Nat. Rev. Mater., 2017, 2, 1-16.
  17. D. Lin, Y. Liu, and Y. Cui, "Reviving the Lithium Metal Anode for High-energy Batteries", Nature Nanotechnol., 2017, 12, 194-206.
  18. L. Tao, A. Hu, Z. Yang, Z. Xu, C. Wall, A. Esker, Z. Zeng, and F. Lin, "Surface Chemistry Approach to Tailoring the Hydrophilicity and Lithiophilicity of Carbon Films for Hosting High-Performance Lithium Metal Anodes", Adv. Funct. Mater., 2020, 2000585. https://doi.org/10.1002/adfm.202000585
  19. F. Shen, F. Zhang, Y. Zheng, Z. Fan, Z. Li, Y. Xuan, B. Zhao, Z. Lin, X. Gui, X. Han, Y. Cheng, and C. Niu, "Direct Growth of 3D Host on Cu Foil for Stable Lithium Metal Anode", Energy Storage Materials, 2018, 13, 323-328. https://doi.org/10.1016/j.ensm.2018.02.005
  20. J. Chen, A. Sanchez, E. Kazyak, A. Davis, and N. Dasgupta, "Dynamic Intelligent Cu Current Collectors for Ultrastable Lithium Metal Anodes", Nano Letters, 2020, 20, 3403-3410. https://doi.org/10.1021/acs.nanolett.0c00316
  21. X. Ke, Y. Liang, L. Ou, H. Liu, Y. Chen, W. Wu, Y. Cheng, Z. Guo, Y. Lai, P. Liu, and Z. Shi, "Surface Engineering of Commercial Ni Foams for Stable Li Metal Anodes", Energy Storage Materials, 2019, 23, 547-555.
  22. S. Chi, Y. Liu, W. Song, L. Fan, and Q. Zhang, "Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-free Lithium Metal Anode", Adv. Funct. Mater., 2017, 27, 1700348. https://doi.org/10.1002/adfm.201700348
  23. G. Huang, S. Chen, P. Guo, R. Tao, K. Jie, B. Liu, X. Zhang, J. Liang, and Y. Cao, "In situ Constructing Lithiophilic NiFx Nanosheets on Ni Foam Current Collector for Stable Lithium Metal Anode via a Succinct Fluorination Strategy", Chem. Eng. J., 2020, 395, 125122. https://doi.org/10.1016/j.cej.2020.125122
  24. G. Yang, Y. Li, Y. Tong, J. Liu, S. Zhang, Z. Guan, B. Xu, Z. Wang, and L. Chen, "Lithium Plating and Stripping on Carbon Nanotube Sponge", Nano Letters, 2018, 19, 494-499. https://doi.org/10.1021/acs.nanolett.8b04376
  25. Z. Sun, S. Jin, H. Jin, Z. Du, Y. Zhu, A. Cao, H. Ji, and L. J. Wan, "Robust Expandable Carbon Nanotube Scaffold for Ultrahigh-Capacity Lithium-Metal Anodes", Adv. Mater., 2018, 30, 1800884. https://doi.org/10.1002/adma.201800884
  26. D. Lin, Y. Liu, Z. Liang, H. Lee, J. Sun, H. Wang, K. Yan, J. Xie, and Y. Cui, "Layered Reduced Graphene Oxide with Nanoscale Interlayer Gaps as a Stable Host for Lithium Metal Anodes", Nature Nanotechnol., 2016, 11, 626-632.
  27. T. T. Zuo, X. W. Wu, C. P. Yang, Y. X. Yin, H. Ye, N. W. Li, and Y. G. Guo, "Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes", Adv. Mater., 2017, 29, 1700389. https://doi.org/10.1002/adma.201700389
  28. R. Zhang, N. W. Li, X. B. Cheng, Y. X. Yin, Q. Zhang, and Y. G. Guo, Advanced for Lithium Metal Anodes", Adv. Sci., 2017, 4, 1600445. https://doi.org/10.1002/advs.201600445
  29. Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu, C. Liu, and Y. Cui, "Composite Lithium Metal Anode by Melt Infusion of Lithium into a 3D Conducting Scaffold with Lithiophilic Coating", Proceedings of the National Academy of Sciences, 2016, 113, 2862-2867. https://doi.org/10.1073/pnas.1518188113
  30. C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, and L. Hu, "Ultrafine Silver Nanoparticles for Seeded Lithium Deposition Toward Stable Lithium Metal Anode", Adv. Mater., 2017, 29, 1702714. https://doi.org/10.1002/adma.201702714
  31. S. Lee, H. Song, J. Y. Hwang, and Y. Jeong, "Directly-prelithiated Carbon Nanotube Film for High-performance Flexible Lithium-ion Battery Electrodes", Fiber. Polym., 2017, 18, 2334-2341. https://doi.org/10.1007/s12221-017-7715-5
  32. Y. Zhang, B. Liu, E. Hitz, W. Luo, Y. Yao, Y. Li, and H. Li, "A Carbon-based 3D Current Collector with Surface Protection for Li Metal Anode", Nano Research, 2017, 10, 1356-1365.
  33. Z. Wang, Z. Wu, N. Bramnik, and S. Mitra, "Fabrication of High-performance Flexible Alkaline Batteries by Implementing Multiwalled Carbon Nanotubes and Copolymer Separator", Adv. Mater., 2014, 26, 970-976. https://doi.org/10.1002/adma.201304020
  34. J. Lee, D. M. Lee, Y. K. Kim, H. S. Jeong, and S. M. Kim, "Significantly Increased Solubility of Carbon Nanotubes in Superacid by Oxidation and Their Assembly into High-Performance Fibers", Small, 2017, 13, 1701131. https://doi.org/10.1002/smll.201701131
  35. Y. S. Jeong, Master's Thesis, Soongsil University, 2012.
  36. S. K. Cho, G. Y. Jung, K. H. Choi, J. Lee, J. Yoo, S. K. Kwak, and S. Y. Lee, "Antioxidative Lithium Reservoir Based on Interstitial Channels of Carbon Nanotube Bundles", Nano Letters, 2019, 19, 5879-5884. https://doi.org/10.1021/acs.nanolett.9b01334
  37. X. Shen, H. Ji, J. Liu, J. Zhou, C. Yan, and T. Qian, "Super Lithiophilic SEI Derived from Quinones Electrolyte to Guide li Uniform Deposition", Energy Storage Materials, 2020, 24, 426-431. https://doi.org/10.1016/j.ensm.2019.07.020
  38. M. Schulz, V. Shanov, Z. Yin, and M. Cahay, "Nanotube Superfiber Materials : Science, Manufacturing, Commercialization", William Andrew, 2019.
  39. S. L. H. Rebelo, A. Geudes, M. E. Szefczyk, A. M. Araujo, and C. Freire, "Progress in the Raman Spectra Analysis of Covalently Functionalized Multiwalled Carbon Nanotubes : Unraveling Disorder in Graphitic Materials", Phys. Chem. Chem. Phys., 2016, 18, 12784-12796. https://doi.org/10.1039/c5cp06519d
  40. A. Shellikeri, V. Watson, D. Adams, E. E. Kalu, J. A. Read, T. R. Jow, J. S. Zeng, and J. P. Zheng, "Investigation of Pre-lithiation in Graphite and Hard-carbon Anodes Using Different Lithium Source Structures", J. Electrochem. Soc., 2017, 164, A3914. https://doi.org/10.1149/2.1511714jes