Acknowledgement
This work is supported by natural science funds of Shaanxi province (grant number 2020JQ-613) and the Ph.D initial scientific research fund of Xi'an University of Technology (grant numbers 108-256081903).
References
- Abdelhakim, A. and Khanna, S. (2017), "Effect of relative density on the dynamic compressive behavior of carbon nanotube reinforced aluminum foam", Mater. Sci. Eng. A, 689, 17-24. https://doi.org/10.1016/j.msea.2017.01.100.
- Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.C. (2000), Metal Foams: A Design Guide. Oxford: Butterworth Heinemann, England.
- Banhart, J (2001), "Manufacture, characterisation and application of cellular metals and metal foams", Progress Mater. Sci., 46, 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5.
- Beck, T., Lohe, D. and Baumgartner, F (2002), "The fatigue behavior of an aluminum foam sandwich beam under alternating bending", Adv. Eng. Mater., 10, 787-790. https://doi.org/10.1002/1527-2648(20021014)4:10<787::AID-ADEM787>3.0.CO;2-6.
- Chen, D., Jing, L. and Yang, F. (2019), "Optimal design of sandwich panels with layered-gradient aluminum foam cores under air-blast loading", Compos. part B, 166, 169-186. https://doi.org/10.1016/j.compositesb.2018.11.125.
- Cheng, S.L., Zhao, X.Y., Xin, Y.J., Du, S.Y. and Li, H.J. (2015), "Quasi-static localized indentation tests on integrated sandwich panel of aluminum foam and epoxy resin", Compos. Struct., 129, 157-164. https://doi.org/10.1016/j.compstruct.2015.04.005.
- Crupi, V., Epasto, G. and Guglielmino, E. (2013), "Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam", Marine Struct., 30, 74-96. https://doi.org/10.1016/j.marstruc.2012.11.002.
- Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids-Structure and Properties, (2nd edition), Cambridge: Cambridge University Press, London, England.
- Harte, A.M., Fleck, N.A. and Ashby, M.F. (2001), "The fatigue strength of sandwich beams with an aluminum alloy foam core", Int. J. Fatigue, 23, 499-507. https://doi.org/10.1016/S0142-1123(01)00012-3.
- Ingraham, M.D., DeMaria, C.J., Issen, K.A. and Morrison, D.J. (2009), "Low cycle fatigue of aluminum foam", Mater. Sci. Eng. A, 504, 150-156. https://doi.org/10.1016/j.msea.2008.10.045.
- Kabir, K., Vodenitcharova, T. and Hoffman, M. (2014), "Response of aluminium foam-cored sandwich panels to bending load", Compos. Part B, 64, 24-32. https://doi.org/10.1016/j.compositesb.2014.04.003.
- Kolluri, M., Mukherjee, M., Garcia-Moreno, F., Banhart, J. and Ramamurity, U. (2008), "Fatigue of a laterally constrained closed cell aluminum foam", Acta Materialia, 56, 1114-1125. https://doi.org/10.1016/j.actamat.2007.11.004.
- Liu, H., Cao, Z.K., Yao, G.C., Luo H.J. and Zu, G.Y. (2013), "Performance of aluminum foam-steel panel sandwich composites subjected to blast loading", Mater. Design, 47, 483-488. https://doi.org/10.1016/j.matdes.2012.12.003.
- Manmohan, D.G., Matsagar, V.A. and Gupta, A.K. (2015), "Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam", Int. J. Impact Eng., 77, 134-146. https://doi.org/10.1016/j.ijimpeng.2014.11.017.
- McCullough, K.Y.G, Fleck, N.A. and Ashby, M.F. (2000), "The stress-life fatigue behaviour of aluminium alloy foams", Fatigue Fract. Eng. Mater. Struct., 23, 199-208. https://doi.org/10.1046/j.1460-2695.2000.00261.x.
- Miyoshi, T., Itoh, M., Akiyama, S. and Kitahara, A. (2000), "ALPORAS aluminum foam: production process, properties, and application", Adv. Eng. Mater., 2, 179-183. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<179::AID-ADEM179>3.0.CO;2-G.
- Mohan, K., Yip, T.H., Idapalapati, S. and Chen, Z. (2011), "Impact response of aluminum foam core sandwich structures", Mater. Sci. Eng. A, 529, 94-101. https://doi.org/10.1016/j.msea.2011.08.066.
- Mohan, K., Yip, T.H., Idapalapati, S. and Seow, H.P. (2005), "Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending", Mater. Sci. Eng. A, 409, 292-301. https://doi.org/10.1016/j.msea.2005.06.070.
- Mondal, D.P., Goel, M.D. and Das, S. (2009), "Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam", Mater. Sci. Eng. A, 507, 102-109. https://doi.org/10.1016/j.msea.2009.01.019.
- Nammi, S.K., Edwards, G. and Shirvani, H. (2016), "Effect of cell-size on the energy absorption features of closed-cell aluminium foams", Acta Astronautica, 128, 243-250. https://doi.org/10.1016/j.actaastro.2016.06.047.
- Nesic, S., Kruoo, U. and Michels, W. (2014), "Monotonic and cyclic loading behavior of cloased-cell aluminum foams and sandwich structures", Procedia Mater. Sci., 4, 269-273. https://doi: 10.1016/j.mspro.2014.07.556.
- Olurin, O.B., McCullough, K.Y.G., Fleck, N.A. and Ashby, M.F. (2001), "Fatigue crack propagation in aluminium alloy foams", Int. J. Fatigue, 23, 375-382. https://doi.org/10.1016/S0142-1123(01)00010-X.
- Peng, P., Wang, K.S., Wang, W., Huang, L.Y., Qiao, K., Che, Q.Y. and Xi, X.P. (2019), "High-performance aluminum foam sandwich prepared through friction stir welding", Mater. Lett., 236, 295-298. https://doi.org/10.1016/j.matlet.2018.10.125.
- Rajaneesh, A., Sridhar, I. and Rajendran, S. (2012), "Impact modeling of foam cored sandwich plates with ductile or brittle face plates", Compos. Struct., 94, 1745-1754. https://doi.org/10.1016/j.compstruct.2011.12.021.
- Schwingel, D., Seeliger, H.W., Vecchionacci, C., Alwes, D. and Dittrich, J. (2007), "Aluminum foam sandwich structures for space applications", Acta Astronaut, 61, 326-330. https://doi.org/10.1016/j.actaastro.2007.01.022.
- Styles, M., Compston, P. and Kalyanasundaram, S.( 2007), "The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures", Compos. Struct., 80, 532-538. https://doi.org/10.1016/j.compstruct.2006.07.002.
- Yan, C and Song, X.D. (2017), "Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet", Steel Compos. Struct., 25, 327-335. https://doi.org/10.12989/scs.2017.25.3.327.
- Yan, C., Song, X.D., Jing, C.H. and Feng, S. (2018), "Effects of epoxy resin liquidity on the mechanical properties of aluminum foam sandwich", J. Adhesion Sci. Technol., 32, 673-691. https://doi.org/10.1080/01694243.2017.1375173.
- Yang, F., Niu, W.J., Jing, L., Wang, Z.H., Zhao, L.M. and Ma, H.W. (2015), "Experimental and numerical studied of the antipenetration performance of sandwich panels with aluminum foam cores", Acta Mechanica Solida Sinica, 28, 735-746. https://doi.org/10.1016/S0894-9166(16)30013-1.
- Zettl, B., Mayer, H., Stanzl-Tschegg, S.E. and Degischer, H.P. (2000), "Fatigue properties of aluminum foams at high number of cycles", Mater. Sci. Eng. A, 292, 1-7. https://doi.org/10.1016/S0921-5093(00)01033-9
- Zhao, M.D., Fan, X.L. and Wang, T.J. (2016), "Fatigue damage of closed-cell aluminum alloy foam: Modeling and mechanisms", Int. J. Fatigue, 87, 257-265. https://doi.org/10.1016/j.ijfatigue.2016.02.009.
- Zu, G.Y., Lu, R.H., Li, X.B., Zhong, Z.Y., Ma, X.J., Han, M.B. and Yao, G.C. (2013), "Three-point bending behavior of aluminum foam sandwich with steel panel", T. Nonferrous Metal Soc. China, 23, 2491-2495. https://doi.org/10.1016/S1003-6326(13)62759-4.