DOI QR코드

DOI QR Code

Experimental study on the fatigue performance of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang (Xi'an University of Technology) ;
  • Jing, Chuanhe (Fuzhou Boe Optoelectronics Technology Co., Ltd.) ;
  • Song, Xuding (Key Laboratory of Road Construction Technology & Equipment of Chang'an University, MOE)
  • Received : 2019.05.16
  • Accepted : 2021.04.04
  • Published : 2021.05.10

Abstract

This work focused on aluminum foam sandwich (AFS) with different foam core densities and different face-sheet thicknesses subjected to constant amplitude three-point bending cyclic loading to study its fatigue performance. The experiments were conducted out by a high frequency fatigue test machine named GPS-100. The experimental results showed that the fatigue life of AFS decreased with the increasing loading level and the structure was sensitive to cyclic loading, especially when the loading level was under 20%. S-N curves of nine groups of AFS specimens were obtained and the fatigue life of AFS followed three-parameter lognormal distribution well. AFS under low cyclic loading showed pronounced cyclic hardening and the static strength after fatigue test increased. For the same loading level, effects of foam core density and face-sheet thickness on the fatigue life of AFS structure were trade-off and for the same loading value, the fatigue life of AFS increased with aluminum foam core density or face-sheet thickness monotonously. Core shear was the main failure mode in the present study.

Keywords

Acknowledgement

This work is supported by natural science funds of Shaanxi province (grant number 2020JQ-613) and the Ph.D initial scientific research fund of Xi'an University of Technology (grant numbers 108-256081903).

References

  1. Abdelhakim, A. and Khanna, S. (2017), "Effect of relative density on the dynamic compressive behavior of carbon nanotube reinforced aluminum foam", Mater. Sci. Eng. A, 689, 17-24. https://doi.org/10.1016/j.msea.2017.01.100.
  2. Ashby, M.F., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H.N.C. (2000), Metal Foams: A Design Guide. Oxford: Butterworth Heinemann, England.
  3. Banhart, J (2001), "Manufacture, characterisation and application of cellular metals and metal foams", Progress Mater. Sci., 46, 559-632. https://doi.org/10.1016/S0079-6425(00)00002-5.
  4. Beck, T., Lohe, D. and Baumgartner, F (2002), "The fatigue behavior of an aluminum foam sandwich beam under alternating bending", Adv. Eng. Mater., 10, 787-790. https://doi.org/10.1002/1527-2648(20021014)4:10<787::AID-ADEM787>3.0.CO;2-6.
  5. Chen, D., Jing, L. and Yang, F. (2019), "Optimal design of sandwich panels with layered-gradient aluminum foam cores under air-blast loading", Compos. part B, 166, 169-186. https://doi.org/10.1016/j.compositesb.2018.11.125.
  6. Cheng, S.L., Zhao, X.Y., Xin, Y.J., Du, S.Y. and Li, H.J. (2015), "Quasi-static localized indentation tests on integrated sandwich panel of aluminum foam and epoxy resin", Compos. Struct., 129, 157-164. https://doi.org/10.1016/j.compstruct.2015.04.005.
  7. Crupi, V., Epasto, G. and Guglielmino, E. (2013), "Comparison of aluminium sandwiches for lightweight ship structures: Honeycomb vs. foam", Marine Struct., 30, 74-96. https://doi.org/10.1016/j.marstruc.2012.11.002.
  8. Gibson, L.J. and Ashby, M.F. (1997), Cellular Solids-Structure and Properties, (2nd edition), Cambridge: Cambridge University Press, London, England.
  9. Harte, A.M., Fleck, N.A. and Ashby, M.F. (2001), "The fatigue strength of sandwich beams with an aluminum alloy foam core", Int. J. Fatigue, 23, 499-507. https://doi.org/10.1016/S0142-1123(01)00012-3.
  10. Ingraham, M.D., DeMaria, C.J., Issen, K.A. and Morrison, D.J. (2009), "Low cycle fatigue of aluminum foam", Mater. Sci. Eng. A, 504, 150-156. https://doi.org/10.1016/j.msea.2008.10.045.
  11. Kabir, K., Vodenitcharova, T. and Hoffman, M. (2014), "Response of aluminium foam-cored sandwich panels to bending load", Compos. Part B, 64, 24-32. https://doi.org/10.1016/j.compositesb.2014.04.003.
  12. Kolluri, M., Mukherjee, M., Garcia-Moreno, F., Banhart, J. and Ramamurity, U. (2008), "Fatigue of a laterally constrained closed cell aluminum foam", Acta Materialia, 56, 1114-1125. https://doi.org/10.1016/j.actamat.2007.11.004.
  13. Liu, H., Cao, Z.K., Yao, G.C., Luo H.J. and Zu, G.Y. (2013), "Performance of aluminum foam-steel panel sandwich composites subjected to blast loading", Mater. Design, 47, 483-488. https://doi.org/10.1016/j.matdes.2012.12.003.
  14. Manmohan, D.G., Matsagar, V.A. and Gupta, A.K. (2015), "Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam", Int. J. Impact Eng., 77, 134-146. https://doi.org/10.1016/j.ijimpeng.2014.11.017.
  15. McCullough, K.Y.G, Fleck, N.A. and Ashby, M.F. (2000), "The stress-life fatigue behaviour of aluminium alloy foams", Fatigue Fract. Eng. Mater. Struct., 23, 199-208. https://doi.org/10.1046/j.1460-2695.2000.00261.x.
  16. Miyoshi, T., Itoh, M., Akiyama, S. and Kitahara, A. (2000), "ALPORAS aluminum foam: production process, properties, and application", Adv. Eng. Mater., 2, 179-183. https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<179::AID-ADEM179>3.0.CO;2-G.
  17. Mohan, K., Yip, T.H., Idapalapati, S. and Chen, Z. (2011), "Impact response of aluminum foam core sandwich structures", Mater. Sci. Eng. A, 529, 94-101. https://doi.org/10.1016/j.msea.2011.08.066.
  18. Mohan, K., Yip, T.H., Idapalapati, S. and Seow, H.P. (2005), "Failure of sandwich beams consisting of alumina face sheet and aluminum foam core in bending", Mater. Sci. Eng. A, 409, 292-301. https://doi.org/10.1016/j.msea.2005.06.070.
  19. Mondal, D.P., Goel, M.D. and Das, S. (2009), "Compressive deformation and energy absorption characteristics of closed cell aluminum-fly ash particle composite foam", Mater. Sci. Eng. A, 507, 102-109. https://doi.org/10.1016/j.msea.2009.01.019.
  20. Nammi, S.K., Edwards, G. and Shirvani, H. (2016), "Effect of cell-size on the energy absorption features of closed-cell aluminium foams", Acta Astronautica, 128, 243-250. https://doi.org/10.1016/j.actaastro.2016.06.047.
  21. Nesic, S., Kruoo, U. and Michels, W. (2014), "Monotonic and cyclic loading behavior of cloased-cell aluminum foams and sandwich structures", Procedia Mater. Sci., 4, 269-273. https://doi: 10.1016/j.mspro.2014.07.556.
  22. Olurin, O.B., McCullough, K.Y.G., Fleck, N.A. and Ashby, M.F. (2001), "Fatigue crack propagation in aluminium alloy foams", Int. J. Fatigue, 23, 375-382. https://doi.org/10.1016/S0142-1123(01)00010-X.
  23. Peng, P., Wang, K.S., Wang, W., Huang, L.Y., Qiao, K., Che, Q.Y. and Xi, X.P. (2019), "High-performance aluminum foam sandwich prepared through friction stir welding", Mater. Lett., 236, 295-298. https://doi.org/10.1016/j.matlet.2018.10.125.
  24. Rajaneesh, A., Sridhar, I. and Rajendran, S. (2012), "Impact modeling of foam cored sandwich plates with ductile or brittle face plates", Compos. Struct., 94, 1745-1754. https://doi.org/10.1016/j.compstruct.2011.12.021.
  25. Schwingel, D., Seeliger, H.W., Vecchionacci, C., Alwes, D. and Dittrich, J. (2007), "Aluminum foam sandwich structures for space applications", Acta Astronaut, 61, 326-330. https://doi.org/10.1016/j.actaastro.2007.01.022.
  26. Styles, M., Compston, P. and Kalyanasundaram, S.( 2007), "The effect of core thickness on the flexural behaviour of aluminium foam sandwich structures", Compos. Struct., 80, 532-538. https://doi.org/10.1016/j.compstruct.2006.07.002.
  27. Yan, C and Song, X.D. (2017), "Bending behavior of aluminum foam sandwich with 304 stainless steel face-sheet", Steel Compos. Struct., 25, 327-335. https://doi.org/10.12989/scs.2017.25.3.327.
  28. Yan, C., Song, X.D., Jing, C.H. and Feng, S. (2018), "Effects of epoxy resin liquidity on the mechanical properties of aluminum foam sandwich", J. Adhesion Sci. Technol., 32, 673-691. https://doi.org/10.1080/01694243.2017.1375173.
  29. Yang, F., Niu, W.J., Jing, L., Wang, Z.H., Zhao, L.M. and Ma, H.W. (2015), "Experimental and numerical studied of the antipenetration performance of sandwich panels with aluminum foam cores", Acta Mechanica Solida Sinica, 28, 735-746. https://doi.org/10.1016/S0894-9166(16)30013-1.
  30. Zettl, B., Mayer, H., Stanzl-Tschegg, S.E. and Degischer, H.P. (2000), "Fatigue properties of aluminum foams at high number of cycles", Mater. Sci. Eng. A, 292, 1-7. https://doi.org/10.1016/S0921-5093(00)01033-9
  31. Zhao, M.D., Fan, X.L. and Wang, T.J. (2016), "Fatigue damage of closed-cell aluminum alloy foam: Modeling and mechanisms", Int. J. Fatigue, 87, 257-265. https://doi.org/10.1016/j.ijfatigue.2016.02.009.
  32. Zu, G.Y., Lu, R.H., Li, X.B., Zhong, Z.Y., Ma, X.J., Han, M.B. and Yao, G.C. (2013), "Three-point bending behavior of aluminum foam sandwich with steel panel", T. Nonferrous Metal Soc. China, 23, 2491-2495. https://doi.org/10.1016/S1003-6326(13)62759-4.