DOI QR코드

DOI QR Code

Influence of Milling Conditions on the Microstructural Characteristics and Mechanical Properties of Non-equiatomic High Entropy Alloy

밀링 조건이 고엔트로피 합금의 미세조직 및 기계적 특성에 미치는 영향

  • Seo, Namhyuk (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Jeon, Junhyub (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Kim, Gwanghoon (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Park, Jungbin (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Son, Seung Bae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University) ;
  • Lee, Seok-Jae (Division of Advanced Materials Engineering, Research Center for Advanced Materials Development, Jeonbuk National University)
  • 서남혁 (전북대학교 신소재공학부) ;
  • 전준협 (전북대학교 신소재공학부) ;
  • 김광훈 (전북대학교 신소재공학부) ;
  • 박정빈 (전북대학교 신소재공학부) ;
  • 손승배 (전북대학교 신소재공학부) ;
  • 이석재 (전북대학교 신소재공학부)
  • Received : 2021.03.22
  • Accepted : 2021.04.13
  • Published : 2021.04.28

Abstract

High-entropy alloys have excellent mechanical properties under extreme environments, rendering them promising candidates for next-generation structural materials. It is desirable to develop non-equiatomic high-entropy alloys that do not require many expensive or heavy elements, contrary to the requirements of typical high-entropy alloys. In this study, a non-equiatomic high-entropy alloy powder Fe49.5Mn30Co10Cr10C0.5 (at.%) is prepared by high energy ball milling and fabricated by spark plasma sintering. By combining different ball milling times and ball-to-powder ratios, we attempt to find a proper mechanical alloying condition to achieve improved mechanical properties. The milled powder and sintered specimens are examined using X-ray diffraction to investigate the progress of mechanical alloying and microstructural changes. A miniature tensile specimen after sintering is used to investigate the mechanical properties. Furthermore, quantitative analysis of the microstructure is performed using electron backscatter diffraction.

Keywords

Acknowledgement

This work was supported by a Korea Institute for Advancement of Technology grant, funded by the Korea Government (MOTIE) (P0002019), as part of the Competency Development Program for Industry Specialists.

References

  1. J. W. Yeh: JOM, 65 (2013) 1759. https://doi.org/10.1007/s11837-013-0761-6
  2. E. P. George, W. A. Curtin and C. C. Tasan: Acta Mater., 188 (2020) 435. https://doi.org/10.1016/j.actamat.2019.12.015
  3. D. B. Miracle and O. N. Senkov: Acta Mater., 122 (2017) 448. https://doi.org/10.1016/j.actamat.2016.08.081
  4. Z. Li and D. Raabe: JOM, 69 (2017) 2099. https://doi.org/10.1007/s11837-017-2540-2
  5. Z. Li, C. C. Tasan, H. Springer, B. Gault and D. Raabe: Sci. Rep., 7 (2017) 40704. https://doi.org/10.1038/srep40704
  6. Y. Kim, S. H. Yang, S. Lee, S. H. Lee and J. W. Noh: J. Korean Powder Metall. Inst., 27 (2020) 373. https://doi.org/10.4150/KPMI.2020.27.5.373
  7. M. Lee, S. Ha, Y. Lee, H. Jang and H. Choi: J. Korean Powder Metall. Inst., 25 (2018) 291. https://doi.org/10.4150/KPMI.2018.25.4.291
  8. S. Nam, S. E. Shin, J. H. Kim and H. Choi: Met. Mater. Int., 26 (2020) 1385. https://doi.org/10.1007/s12540-020-00769-8
  9. D. Kwon, S. Noh and J. G. Lee: J. Korean Powder Metall. Inst., 27 (2020) 311. https://doi.org/10.4150/KPMI.2020.27.4.311
  10. C. Suryanarayana: Porg. Mater. Sci., 46 (2001) 1. https://doi.org/10.1016/S0079-6425(99)00010-9
  11. S. J. Oh, D. Park, K. Kim, I. J. Shon and S. J. Lee: Mater. Sci. Eng. A, 725 (2018) 382. https://doi.org/10.1016/j.msea.2018.04.051
  12. J. Jeon, S. Choi, N. Seo, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1249.
  13. N. Seo, J. Jeon, S. Choi, Y. H. Moon, I. J. Shon and S. J. Lee: Arch. Metall. Mater., 65 (2020) 1005.
  14. D. P. Xiang, L. Ding, Y. Y. Li, G. B. Chen and Y. W. Zhao: J. Alloys Compd., 562 (2013) 19. https://doi.org/10.1016/j.jallcom.2013.02.014
  15. S. Choi, N. Seo, J. Jun, S. B. Son and S. J. Lee: J. Korean Powder Metall. Inst., 27 (2020) 414. https://doi.org/10.4150/KPMI.2020.27.5.414
  16. Y. Matsuoka, T. Iwasaki, N. Nakada, T. Tsuchiyama and S. Takaki: ISIJ Int., 53 (2013) 1224. https://doi.org/10.2355/isijinternational.53.1224
  17. Z. Nasiri, S. Ghaemifar, M. Naghizadeh and H. Mirzadeh: Met. Mater. Int., (2020).
  18. S. J. Lee, S. Lee and B. C. De Cooman: Int. J. Mater. Res., 104 (2013) 423. https://doi.org/10.3139/146.110882
  19. S. J. Lee and Y. K. Lee: Mater. Sci. Forum, 475-479 (2005) 3169. https://doi.org/10.4028/www.scientific.net/MSF.475-479.3169
  20. L. Zhang, Y. Q. Zhang, Y. H. Jiang and R. Zhou: Vacuum, 122 (2015) 187. https://doi.org/10.1016/j.vacuum.2015.09.024
  21. M. B. Shongwe, S. Diouf, M. O. Durowoju and P. A. Olubambi: J. Alloys Compd., 649 (2015) 824. https://doi.org/10.1016/j.jallcom.2015.07.223