DOI QR코드

DOI QR Code

Effect of Hydrothermal Reaction Conditions on Piezoelectric Output Performance of One Dimensional BaTiO3 Nanotube Arrays

1차원 BaTiO3 나노튜브 어레이의 압전발전성능에 수열합성 반응조건이 미치는 영향

  • Lee, Jae Hoon (School of Materials Science and Engineering, Kyungpook National University) ;
  • Hyeon, Dong Yeol (School of Materials Science and Engineering, Kyungpook National University) ;
  • Heo, Dong Hun (School of Materials Science and Engineering, Kyungpook National University) ;
  • Park, Kwi-Il (School of Materials Science and Engineering, Kyungpook National University)
  • 이재훈 (경북대학교 신소재공학부) ;
  • 현동열 (경북대학교 신소재공학부) ;
  • 허동훈 (경북대학교 신소재공학부) ;
  • 박귀일 (경북대학교 신소재공학부)
  • Received : 2021.04.13
  • Accepted : 2021.04.21
  • Published : 2021.04.28

Abstract

One-dimensional (1D) piezoelectric nanostructures are attractive candidates for energy generation because of their excellent piezoelectric properties attributed to their high aspect ratios and large surface areas. Vertically grown BaTiO3 nanotube (NT) arrays on conducting substrates are intensively studied because they can be easily synthesized with excellent uniformity and anisotropic orientation. In this study, we demonstrate the synthesis of 1D BaTiO3 NT arrays on a conductive Ti substrate by electrochemical anodization and sequential hydrothermal reactions. Subsequently, we explore the effect of hydrothermal reaction conditions on the piezoelectric energy conversion efficiency of the BaTiO3 NT arrays. Vertically aligned TiO2 NT arrays, which act as the initial template, are converted into BaTiO3 NT arrays using hydrothermal reaction with various concentrations of the Ba source and reaction times. To validate the electrical output performance of the BaTiO3 NT arrays, we measure the electricity generated from each NT array packaged with a conductive metal foil and epoxy under mechanical pushings. The generated output voltage signals from the BaTiO3 NT arrays increase with increasing concentration of the Ba source and reaction time. These results provide a new strategy for fabricating advanced 1D piezoelectric nanostructures by demonstrating the correlation between hydrothermal reaction conditions and piezoelectric output performance.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2019R1I1A2A01057073, No.2021R1A4A2001658).

References

  1. H. Park, D. Y. Hyeon, M. Jung, K.-I. Park and J. Park: Compos. Part B-Eng., 203 (2020) 108476. https://doi.org/10.1016/j.compositesb.2020.108476
  2. Y. Qi and M. C. McAlpine: Energy Environ. Sci., 3 (2010) 1275. https://doi.org/10.1039/c0ee00137f
  3. D. Y. Park, D. J. Joe, D. H. Kim, H. Park, J. H.Han, C. K Jeong, H. Park, J. G. Park, B. Joung and K. J. Lee: Adv. Mater., 29 (2017) 1702308. https://doi.org/10.1002/adma.201702308
  4. T. Takenaka, H. Nagata, Y. Hiruma, Y. Yoshii and K. Matumoto: J. Electroceram., 19 (2007) 259. https://doi.org/10.1007/s10832-007-9035-4
  5. S. Zhang, R. Xia, C. A. Randall and T. R. Shrout: J. Mater., Res., 20 (2005) 2067. https://doi.org/10.1557/jmr.2005.0254
  6. T. Karaki, K. Yan, T. Miyamoto and M. Adachi: Jpn. J. Appl. Phy., 46 (2007) L97. https://doi.org/10.1143/JJAP.46.L97
  7. D. S. Kim, C. Baek, H. J. Ma and D.K. Kim: Ceram. Int., 42 (2016) 7141. https://doi.org/10.1016/j.ceramint.2016.01.103
  8. C. Baek, J. E. Wang, S. Moon, C.-H. Choi and D. K Kim: J. Am. Ceram. Soc., 99 (2016) 3802. https://doi.org/10.1111/jace.14397
  9. K.-I. Park, M. Lee, Y. Liu, S. Moon, G.-T. Hwang, G. Zhu, J. E. Kim, S. O. Kim, D. K. Kim, Z. L. Wang and K. J. Lee: Adv. Mater., 24 (2012) 2999. https://doi.org/10.1002/adma.201200105
  10. H. Jiao, K. Zhao, L. Ma, Y. Tang, X. Liu and T. Bian: J. Alloys Compd., 693 (2017) 221. https://doi.org/10.1016/j.jallcom.2016.09.175
  11. C. K. Jeong, C. Baek, A. I. Kingon, K.-I. Park and S.-H. Kim: Small, 14 (2018) 1704022. https://doi.org/10.1002/smll.201704022
  12. C. K. Jeong, D. Y. Hyeon, G.-T. Hwang, G.-J. Lee, M.-K. Lee, J.-J. Park and K.-I. Park: J. Mater. Chem. A, 7 (2019) 25481. https://doi.org/10.1039/C9TA09864J
  13. C. K. Jeong, J. H. Lee, D. Y. Hyeon, Y.-G. Kim, S. Kim, C. Baek, G.-J. Lee, M.-K. Lee, J.-J. Park and K.-I. Park: Appl. Surf. Sci., 512 (2020) 144784. https://doi.org/10.1016/j.apsusc.2019.144784
  14. D. Y. Hyeon and K.-I, Park: Adv. Mater. Technol., 4 (2019) 1900228. https://doi.org/10.1002/admt.201900228
  15. J. A. Munoz-Tabares, K. Bejtka, A. Lamberti, N. Garino, S. Bianco, M. Quaglio, C. F. Pirri and A. Chiodoni: Nanoscale, 8 (2016) 6866. https://doi.org/10.1039/C5NR07283B
  16. J. Choi, J. K. Lee, J. H. Lim and S. J. Kim: J. Korean Ind. Eng. Chem., 19 (2008) 249.
  17. K. Lee: Appl. Chem. Eng., 28 (2017) 601. https://doi.org/10.14478/ace.2017.1011
  18. K. Yasuda, J. M. Macak, S. Berger, A. Ghicov and P. Schmuki: J. Electochem. Soc., 154 (2007) C472. https://doi.org/10.1149/1.2749091
  19. H. Koo, Y. Lee and D. Pak: J. Korean Soc. Water Environ., 31 (2015) 360. https://doi.org/10.15681/KSWE.2015.31.4.360
  20. J. O. Eckert jr., C. C. Hung-Houston, B. L. Gersten, M. M. Lencka and R. E. Riman: J. Am. Ceram. Soc., 79 (1996) 2929. https://doi.org/10.1111/j.1151-2916.1996.tb08728.x
  21. C. Wu, Y. Tang, K. Zhao, B. Mao and X. Ru: J. Alloys Compd., 845 (2020) 156301. https://doi.org/10.1016/j.jallcom.2020.156301
  22. M. Lin, V. K. Thakur, E. J. Tan and P. S. Lee: J. Mater. Chem., 21 (2011) 16500. https://doi.org/10.1039/c1jm12429c