DOI QR코드

DOI QR Code

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS

  • 투고 : 2020.06.19
  • 심사 : 2020.09.07
  • 발행 : 2021.04.30

초록

In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

키워드

참고문헌

  1. A. M. Abdul-Jabbar, C. A. K. Ahmed, T. K. Kwak, and Y. Lee, On commutativity of nilpotent elements at zero, Commun. Korean Math. Soc. 32 (2017), no. 4, 811-826. https://doi.org/10.4134/CKMS.c170003
  2. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  3. D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. https://doi.org/10.1080/00927879908826596
  4. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  5. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  6. H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970), 363-368. https://doi.org/10.1017/S0004972700042052
  7. U. S. Chakraborty and K. Das, On nil-symmetric rings, J. Math. 2014 (2014), Art. ID 483784, 7 pp. https://doi.org/10.1155/2014/483784
  8. W. Chen, On nil-semicommutative rings, Thai J. Math. 9 (2011), no. 1, 39-47.
  9. P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. https://doi.org/10.1112/S0024609399006116
  10. J. M. Habeb, A note on zero commutative and duo rings, Math. J. Okayama Univ. 32 (1990), 73-76.
  11. A. Harmanci, H. Kose, Y. Kurtulmaz, and B. Ungor, Reflexivity of rings via nilpotent elements, accepted in Rev. Un. Mat. Argentina, also arXiv:1807.02333 [math.RA].
  12. A. Harmanci, H. Kose, and B. Ungor, On weak symmetric property of rings, Southeast Asian Bull. Math. 42 (2018), no. 1, 31-40.
  13. I. Kaplansky, Rings of Operators, W. A. Benjamin, Inc., New York, 1968.
  14. M. Kheradmand, H. Khabazian, T. K. Kwak, and Y. Lee, Reflexive property restricted to nilpotents, J. Algebra Appl. 16 (2017), no. 3, 1750044, 20 pp. https://doi.org/10.1142/S021949881750044X
  15. H. K. Kim, T. K. Kwak, S. I. Lee, Y. Lee, S. J. Ryu, H. J. Sung, and S. J. Yun, A generalization of symmetric ring property, Bull. Korean Math. Soc. 53 (2016), no. 5, 1309-1325. https://doi.org/10.4134/BKMS.b150589
  16. H. Kose and A. Harmanci, Central CNZ rings, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 38 (2018), no. 1, Mathematics, 95-104.
  17. H. Kose, B. Ungor, S. Halicioglu, and A. Harmanci, A generalization of reversible rings, Iran. J. Sci. Technol. Trans. A Sci. 38 (2014), no. 1, 43-48.
  18. J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368. https://doi.org/10.4153/CMB-1971-065-1
  19. Z. Liu and R. Zhao, On weak Armendariz rings, Comm. Algebra 34 (2006), no. 7, 2607-2616. https://doi.org/10.1080/00927870600651398
  20. G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. https://doi.org/10.1016/S0022-4049(02)00070-1
  21. G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724. https://doi.org/10.1080/00927878108822678
  22. F. Meng and J. Wei, e-symmetric rings, Commun. Contemp. Math. 20 (2018), no. 3, 1750039, 8 pp. https://doi.org/10.1142/S0219199717500390
  23. R. Mohammadi, A. Moussavi, and M. Zahiri, On nil-semicommutative rings, Int. Electron. J. Algebra 11 (2012), 20-37.
  24. R. Mohammadi, A. Moussavi, and M. Zahiri, On annihilations of ideals in skew monoid rings, J. Korean Math. Soc. 53 (2016), no. 2, 381-401. https://doi.org/10.4134/JKMS.2016.53.2.381
  25. M. Nagata, Local Rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York, 1962.
  26. L. Ouyang and H. Chen, On weak symmetric rings, Comm. Algebra 38 (2010), no. 2, 697-713. https://doi.org/10.1080/00927870902828702
  27. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. http://projecteuclid.org/euclid.pja/1195510144 https://doi.org/10.3792/pjaa.73.14
  28. A. A. Tuganbaev, Semidistributive modules and rings, Mathematics and its Applications, 449, Kluwer Academic Publishers, Dordrecht, 1998. https://doi.org/10.1007/978-94-011-5086-6
  29. B. Ungor, S. Halicioglu, H. Kose, and A. Harmanci, Rings in which every nilpotent is central, Algebras Groups Geom. 30 (2013), no. 1, 1-18.
  30. J. Wei, Generalized weakly symmetric rings, J. Pure Appl. Algebra 218 (2014), no. 9, 1594-1603. https://doi.org/10.1016/j.jpaa.2013.12.011