DOI QR코드

DOI QR Code

EXTENDED GENERALIZED BATEMAN'S MATRIX POLYNOMIALS

  • Makky, Mosaed M. (Department of Mathematics Faculty of Science South Valley University)
  • Received : 2020.03.31
  • Accepted : 2020.07.24
  • Published : 2021.04.30

Abstract

In this article, a study of generalized Bateman's matrix polynomials is presented. We obtained partial differential equations by using differential operators in the generalized Bateman's matrix polynomials for two variables. Then we introduced some different recurrence relationships of the generalized Bateman's matrix polynomials. Finally present the relationship between the generalized Bateman's matrix polynomials of one and two variables.

Keywords

References

  1. S. M. Abbas, M. A. Khan, and A. H. Khan, On some generating functions of generalized Bateman's and Pasternak's polynomials of two variables, Commun. Korean Math. Soc. 28 (2013), no. 1, 87-105. https://doi.org/10.4134/CKMS.2013.28.1.087
  2. R. Aktas, B. Cekim, and A. Cevik, Extended Jacobi matrix polynomials, Util. Math. 92 (2013), 47-64.
  3. A. Ali, M. Z. Iqbal, B. Anwer, and A. Mehmood, Generalization of Bateman polynomials, Int. J. Anal. Appl. 17 (2019), no. 5. https://doi.org/10.28924/2291-8639
  4. G. E. Andrews, R. Askey, and R. Roy, Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, Cambridge, 1999. https://doi. org/10.1017/CBO9781107325937
  5. A. G. Constantine and R. J. Muirhead, Partial differential equations for hypergeometric functions of two argument matrices, J. Multivariate Anal. 2 (1972), 332-338. https://doi.org/10.1016/0047-259X(72)90020-6
  6. L. Jodar and R. Company, Hermite matrix polynomials and second order matrix differential equations, Approx. Theory Appl. (N.S.) 12 (1996), no. 2, 20-30.
  7. L. Jodar, R. Company, and E. Ponsoda, Orthogonal matrix polynomials and systems of second order differential equations, Differential Equations Dynam. Systems 3 (1995), no. 3, 269-288.
  8. L. Jodar and J. C. Cortes, Some properties of gamma and beta matrix functions, Appl. Math. Lett. 11 (1998), no. 1, 89-93. https://doi.org/10.1016/S0893-9659(97)00139-0
  9. L. Jodar and J. C. Cortes, On the hypergeometric matrix function, J. Comput. Appl. Math. 99 (1998), no. 1-2, 205-217. https://doi.org/10.1016/S0377-0427(98)00158-7
  10. L. Jodar, E. Defez, and E. Ponsoda, Orthogonal matrix polynomials with respect to linear matrix moment functionals: theory and applications, Approx. Theory Appl. (N.S.) 12 (1996), no. 1, 96-115.
  11. L. Kargin and V. Kurt, Some relations on Hermite matrix polynomials, Math. Comput. Appl. 18 (2013), no. 3, 323-329. https://doi.org/10.3390/mca18030323
  12. N. R. Khan, N. Kumar, and R. Qamar, Two variables generalization of Jacobi polynomials, Global J. Pure Appl. Math. 13 (2017), no. 5, 1387-1399.
  13. M. A. Khan and A. K. Shukla, On some generalized Sister Celine's polynomials, Czechoslovak Math. J. 49(124) (1999), no. 3, 527-545. https://doi.org/10.1023/A:1022419302379
  14. M. M. Makky, Some results associated with Jacobi matrix polynomials, Global J. Pure Appl. Math. 16 (2020), no. 1, 119-130.
  15. F. Marcellan, M. Shadab, and S. Jabee, Some new identities involving Sheffer-Appell polynomial sequences via matrix approach, Mediterr. J. Math. 16 (2019), no. 5, Paper No. 116, 20 pp. https://doi.org/10.1007/s00009-019-1398-7
  16. E. D. Rainville, Special Functions, The Macmillan Co., New York, 1960.
  17. A. Shehata, Connections between Legendre with Hermite and Laguerre matrix polynomials, Gazi Univ. J. Sci. 28 (2015), 221-230.
  18. H. M. Srivastava, S. Jabee, and M. Shadab, Differential equations and recurrence relations of the Sheffer-Appell polynomial sequence: A matrix approach. https://arxiv.org/abs/1903.09620?
  19. H. M. Srivastava and P. W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1985.
  20. H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1984.
  21. A. Terras, Special functions for the symmetric space of positive matrices, SIAM J. Math. Anal. 16 (1985), no. 3, 620-640. https://doi.org/10.1137/0516046