DOI QR코드

DOI QR Code

Character Educational Implications of Artificial Neural Network Technology

인공 신경망 기술로 살펴보는 인성 교육의 함의점 모색

  • Kwon, Oh-Sung (Dept. of Computer Education, Gongju National University Of Education)
  • 권오성 (공주교육대학교 컴퓨터교육과)
  • Received : 2021.01.11
  • Accepted : 2021.02.22
  • Published : 2021.02.26

Abstract

Artificial neural network technology is a field of computer technology that seeks to mechanically realize human sensory processing and internal changes, and has sufficient relevance to neuroscience, character and moral education. Assuming that character education is an effort to guide the human inner side in a desirable direction, artificial neural networks are excellent as an experimental tool to explain such thought processes and characteristics. Therefore, this study seeks to find implications related to character education and explain the phenomenon based on the operating principle of AI artificial neural network technology. Recently, AI research tends to focus on connectionist intelligence, such as deep neural networks, rather than traditional symbolism. This paper also attempts to explain the unique behavioral characteristics of deep neural networks in relation to important elements of character education in accordance with this trend of the times. As a specific element of implications, "Overfitting: Resolving the concentrated learning ability", "Activation function; Ensuring individuality and diversity of learners" and "Analog processing: balance between learner's reason and emotion". As in this paper, efforts to find the implications of personality education from the perspective of AI artificial neural networks have meaning as a tool for fusion with other subjects and broaden the extension of AI information education.

인공 신경망 기술은 인간의 감각 처리와 내적인 변화를 기계적으로 실현하려는 컴퓨터 기술 분야로서 신경과학, 인성 및 도덕 교육과도 충분한 관련성을 갖는다. 인성 교육이 인간의 내면을 바람직한 방향으로 유도하는 노력이라고 할 때 인공신경망은 그러한 사고 과정과 특성을 설명하는 실험 도구로서 손색이 없다. 이에 본 연구는 AI 인공신경망 기술의 동작 원리를 기본으로 인성 교육과 관련된 함의 요소를 찾고 그 현상을 설명하고자 한다. 최근 AI 연구는 전통적인 기호주의보다는 심층신경망 등 연결주의 지능 분야에 집중되는 경향이 있다. 본 논문 역시도 이러한 시대적 흐름에 따라 심층 신경망의 독특한 동작 특성을 인성 교육의 중요 요소와 관련지어 설명하고자 한다. 구체적인 함의 요소로 "오버피팅 : 편중된 학습능력의 해소", "활성화 함수 ; 학습자의 개별성과 다양성 확보", "아날로그 연산 : 학습자의 이성과 감성의 균형"을 제시한다. 본 논문과 같이 AI 인공신경망 관점에서 인성 교육과의 함의점을 찾는 노력은 AI 정보 교육의 외연을 넓히고 타 교과와의 융합 도구로 그 의미를 갖는다.

Keywords

References

  1. Jeong Changwoo (2016). An Embodiment Approach for Character Education and Its Practical Implementation, The SNU Journal of Education Research, Seoul National University, 25(1), 197-221.
  2. Kwon Noo-RIe (2019). A Study on the Moral Educational Implications of Neuroethics : Focusing on moral decision-making, Seoul National University, Master Thesis.
  3. Kwon Oh-Sung (2020). Artificial Intelligence Education Centered on Humanities : Focused on university literacy education, 2020 Summer Conference proceeding, Korean Association of information Education, 11(2), 1-5.
  4. Luc De Raedt, Sebastijan Dumancic, Robin Manhaeve, Giuseppe Marra (2020). From Statistical Relational to Neuro-Symbolic Artificial Intelligence, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
  5. LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E.; Hubbard, W., Jackel, L. D. (1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural Computation, 1(4), 541-551 https://doi.org/10.1162/neco.1989.1.4.541
  6. Minsky M. L. and Papert S. A. (1969). Perceptrons. Cambridge, MA: MIT Press.
  7. Rosenblatt, Frank (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, Cornell Aeronautical Laboratory, Psychological Review, 65(6), 386-40
  8. Seungki Shin (2020). Designing the Framework of Evaluation on Learner's Cognitive Skill for Artificial Intelligence Education through Computational Thinking, Journal of The Korean Association of Information Education, 24(1), 59-69. https://doi.org/10.14352/jkaie.2020.24.1.59
  9. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner (1998). Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86(11):22782324
  10. Introduction to Different Activation Functions for Deep Learning (2021). https://medium.com/@shrutijadon10104776/survey-on-activation-functions-for-deep-learning-9689331ba092
  11. geeksforgeeks (2021). Underfitting and Overfitting in Machine Learning, https://www.geeksforgeeks.org/ underfitting-and-overfitting-in-machinelearning/
  12. Simplilearn Solutions (2021). Top 10 Deep Learning Algorithms You Should Know in (2020). https://www.simplilearn.com/tutorials/deep-learning-tutorial /deep-learning- algorithm
  13. Machine Learning Mastery Pty (2021). Understand the Impact of Learning Rate on Neural Network Performance.https://machinelearningmastery.com/ understand-the-dynamics-of-learning-rateon-deep-learning-neural-networks/
  14. koreaherald (2021). AI education to begin in high schools next year, http://www.koreaherald.com/view.php?ud=20201120000655.
  15. wikipedia (2021). Heuristic, https://en.wikipedia.org/wiki/Heuristic
  16. Stanford University (2021). connectionism, https://plato.stanford.edu/entries/ connectionism/