Seedling Quality and Photosynthetic Characteristic of Vegetables Grown Under a Spectrum Conversion Film

광전환 필름 피복에 따른 채소류의 묘소질 및 광합성 특성

  • Yoon, Hyo In (Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University) ;
  • Kang, Jun Hyeun (Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University) ;
  • Kim, Doyeon (Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University) ;
  • Son, Jung Eek (Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 윤효인 (서울대학교 농림생물자원학부 원예생명공학전공) ;
  • 강준현 (서울대학교 농림생물자원학부 원예생명공학전공) ;
  • 김도연 (서울대학교 농림생물자원학부 원예생명공학전공) ;
  • 손정익 (서울대학교 농업생명과학연구원)
  • Received : 2021.03.22
  • Accepted : 2021.04.12
  • Published : 2021.04.30


This study aims to investigate the effect of spectrum conversion film on seedling quality and photosynthetic traits of leaf and fruit vegetables. Lettuce, Chinese cabbage, and cucumber seeds were sown in 50-cell plug trays filled with commercial seedling media and grown under a spectrum conversion film (SCF) and a poly-ethylene film as a control. The SCF decreased blue-green light and increased red light, and thereby increased the R/FR ratio and R/B ratio of solar spectrum, which was sufficient to affect the photosynthesis, growth, and morphogenesis of the seedlings. The photosynthetic rates of Chinese cabbage and cucumber were significantly increased under the SCF, and their maximum photosynthetic rates were 23% and 19%, respectively. However, the growth of lettuce was decreased under the SCF, and the plant height and leaf length became longer, resulting in a decrease in seedling quality. Although the morphology of Chinese cabbage grown under the SCF was not changed compared to the control, the leaf dry weight increased and its dwarf rate was 10%. The growth of cucumber under the SCF was similar to that of the control, but the plant height and petiole were significantly reduced, resulting in a high dwarf rate of 24%. It was concluded that the solar spectrum modified by the SCF increased the photosynthetic efficiency and improved the seedling quality of Chinese cabbage and cucumber.

본 연구는 광전환필름에 의해 변형된 태양광 하에서 채소류의 묘소질과 광합성 특성에 미치는 영향을 구명하기위해 수행되었다. 상추와 배추, 오이 종자를 원예용 상토로 충진된 50구 플러그 트레이에 파종하고, 광전환 필름(SCF)과 상업용 폴리에틸렌 필름(대조군) 하에서 재배하였다. 대조군 대비 SCF에 투과된 태양광 스펙트럼은 청-녹색광은 감소하고, 적색광은 증가했으며 R/FR 비와 R/B 비가 증가하여 묘의 광합성과 생육, 형태형성 측면에서 영향을 미치기에 충분한 수준이었다. 광합성속도는 SCF 하에서 자란 배추와 오이 묘에서 유의적으로 증가했으며, 최대 광합성속도는 각각 23%, 19% 높게 나타났다. 상추의 경우, SCF 처리구에서 생육이 유의적으로 감소하였으며 도장하였다. SCF 필름 하에서 자란 배추의 경우, 형태적인 차이는 없었으나 잎의 건물중이 증가하여 묘의 충실도가 유의적으로 증가했고 왜화율은 10%로 나타났다. SCF 처리구의 오이 묘는 생육에 차이는 없었으나 엽병 및 초장이 유의적으로 감소하여 왜화율이 24%로 높게 나타났다. 결론적으로 SCF에 의해 변형된 태양광 스펙트럼은 배추와 오이 묘의 광합성 효율을 증가시키고 묘소질을 향상시켰다고 판단되었다.



  1. Dieleman J.A., P.H.B. de Visser, E. Meinen, J.G. Grit, and T.A. Dueck 2019, Integrating morphological and physiological responses of tomato plants to light quality to the crop level by 3D modeling. Front Plant Sci 10:1-12. doi:10.3389/fpls.2019.00839
  2. Duursma R.A., D.S. Falster, F. Valladares, F.J. Sterck, R.W. Pearcy, C.H. Lusk, K.M. Sendall, M. Nordenstahl, N.C. Houter, B.J. Atwell, N. Kelly, J.W.G. Kelly, M. Liberloo, D.T. Tissue, B.E. Medlyn, and D.S. Ellsworth 2012, Light interception efficiency explained by two simple variables: a test using a diversity of small- to medium-sized woody plants. New Phytol 193:397-408. doi:10.1111/j.1469-8137.2011.03943.x
  3. Hidaka K., K. Yoshida, K. Shimasaki, K. Murakami, D. Yasutake, and M. Kitano 2008, Spectrum conversion film for regulation of plant growth. J Fac Agric Kyushu Univ 53:549-552. doi:10.5109/12872
  4. Hogewoning S.W., E. Wientjes, P. Douwstra, G. Trouwborst, W. van Ieperen, R. Croce, and J. Harbinson 2012, Photosynthetic quantum yield dynamics: From photosystems to leaves. Plant Cell 24:1921-1935. doi:10.1105/tpc.112.097972
  5. Hogewoning S.W., G. Trouwborst, H. Maljaars, H. Poorter, W. Ieperen, and J. Harbinson 2010, Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107-3117. doi:10.1093/jxb/erq132
  6. Huche-Thelier L., L. Crespel, J.L. Gourrierec, P. Morel, S. Sakr, and N. Leduc 2016, Light signaling and plant responses to blue and UV radiations-Perspectives for applications in horticulture. Environ Exp Bot 121:22-38. doi:10.1016/j.envexpbot.2015.06.009
  7. Jeong H.W., H.R. Lee, H.M. Kim, H.M. Kim, H.S. Hwang, and S.J. Hwang 2020a, Using light quality for growth control of cucumber seedlings in closed-type plant production system. Plants 9:639. doi:10.3390/plants9050639
  8. Jeong H.W., H.R. Lee, H.S. Hwang, E.B. Kim, and S.J. Hwang 2020b, Growth suppression of tomato plug seedlings as affected by material type for brushing stimulation. Prot Hortic Plant Fact 29:313-319. doi:10.12791/KSBEC.2020.29.4.313
  9. Jo H.G., H.W. Jeong, H.R. Lee, S.M. Kwon, H.S. Hwang, and S.J. Hwang 2021, Growth of tomato and pepper grafted plug seedlings under different shading condition during acclimatization after graft-taking. J Bio-Environment Control 30:10-18. doi:10.12791/KSBEC.2021.30.1.010
  10. Kang W.H., J. Kim, H.I. Yoon, and J.E. Son 2020, Quantification of spectral perception of plants with light absorption of photoreceptors. Plants 9:556. doi:10.3390/plants9050556
  11. Kim J.K., D.C. Jang, H.M. Kang, K.J. Nam, M.H. Lee, J.K. Na, and K.Y. Choi 2021, Effects of light intensity and electrical conductivity level on photosynthesis, growth and functional material contents of Lactuca indica L. 'Sunhyang' in hydroponics. J Bio-Environment Control 30:1-9. doi:10.12791/KSBEC.2021.30.1.001
  12. Lamnatou C., and D. Chemisana 2013, Solar radiation manipulations and their role in greenhouse claddings: Fluorescent solar concentrators, photoselective and other materials. Renew Sustain Energy Rev 27:175-190. doi:10.1016/j.rser.2013.06.052
  13. Lee J.E., Y.S. Shin, H.W. Do, J.D. Cheung, and Y.H. Kang 2016, Effect of seedling quality and growth after transplanting of Korean melon nursed under LED light sources and intensity. Prot Hortic Plant Fact 25:294-301. doi:10.12791/KSBEC.2016.25.4.294
  14. Lee S.-H., R.K. Tewari, E.-J. Hahn, and K.-Y. Paek 2007, Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania Somnifera (L.) Dunal. plantlets. Plant Cell Tissue Organ Cult 90:141-151. doi:10.1007/s11240-006-9191-2
  15. Li Y., W. Tu, C. Liu, W. Liu, G. Hu, X. Liu, Z. Chen, and C. Yang 2017, Light conversion film promotes CO2 assimilation by increasing cyclic electron flow around Photosystem I in Arabidopsis thaliana. Int J Hydrogen Energy 42:8545-8553. doi:10.1016/j.ijhydene.2017.01.108
  16. Lobo F. de A., M.P. de Barros, H.J. Dalmagro, A.C. Dalmolin, W.E. Pereira, E.C. de Souza, G.L. Vourlitis, and C.E. Rodriguez Ortiz 2013, Fitting net photosynthetic light-response curves with Microsoft Excel - A critical look at the models. Photosynthetica 51:445-456. doi:10.1007/s11099-013-0045-y
  17. Lotscher M., and J. Nosberger 1997, Branch and root formation in Trifolium repens is influenced by the light environment of unfolded leaves. Oecologia 111:499-504. doi:10.1007/s004420050263
  18. McCree K.J. 1971, The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9:191-216. doi:10.1016/0002-1571(71)90022-7
  19. Nishimura Y., Y. Fukumoto, H. Aruga, and Y. Shimoi 2009, Growth and developmental characteristics of vegetables grown under spectrum conversion film. Hortic Environ Biotechnol 50:416-421.
  20. Park K.S., J.K. Kwon, D.K. Lee, and J.E. Son 2016, Microclimate and crop growth in the greenhouses covered with spectrum conversion films using different phosphor particle sizes. Prot Hortic Plant Fact 25:111-117. doi:10.12791/KSBEC.2016.25.2.111
  21. Ranwala N.K.D., D.R. Decoteau, A.P. Ranwala, and W.B. Miller 2002, Changes in soluble carbohydrates during phytochrome-regulated petiole elongation in watermelon seedlings. Plant Growth Regul 38:157-163. doi:10.1023/A:1021272902811
  22. Schulze E.-D., E. Beck, N. Buchmann, S. Clemens, K. Muller-Hohenstein, and M. Scherer-Lorenzen 2019, Light. In: Plant Ecology. Springer, Berlin, Heidelberg, pp 57-90. doi:10.1007/978-3-662-56233-8_3
  23. Smith H. 2000, Phytochromes and light signal perception by plants - An emerging synthesis. Nature 407:585-591. doi:10.1038/35036500
  24. Son K.-H., and M.-M. Oh 2013, Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995. doi:10.21273/HORTSCI.48.8.988
  25. Takenaka A. 1994, Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecol Res 9:109-114. doi:10.1007/BF02347485
  26. Yoon H.I., J.H. Kang, W.H. Kang, and J.E. Son 2020a, Subtle changes in solar radiation under a green-to-red conversion film affect the photosynthetic performance and chlorophyll fluorescence of sweet pepper. Photosynthetica 58:1107-1115. doi:10.32615/ps.2020.057
  27. Yoon H.I., J.H. Kim, K.S. Park, J.W. Namgoong, T.G, Hwang, J.P. Kim, and J.E. Son 2020b, Quantitative methods for evaluating the conversion performance of spectrum conversion films and testing plant responses under simulated solar conditions. Hortic Environ Biotechnol 61:999-1009. doi:10.1007/s13580-020-00286-y
  28. Zhang M., Y. Park, and E.S. Runkle 2020, Regulation of extension growth and flowering of seedlings by blue radiation and the red to far-red ratio of sole-source lighting. Sci Hortic 272:109478. doi:10.1016/j.scienta.2020.109478