과제정보
This work was supported by NRF of Korea (2018R1D1A1B0704642813), Hallym University (H20160646) and Korea Healthcare R&D project (HI17C0597).
참고문헌
- Kaplan DH, Igyarto BZ and Gaspari AA (2012) Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol 12, 114-124 https://doi.org/10.1038/nri3150
- Honda T, Egawa G, Grabbe S and Kabashima K (2013) Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol 133, 303-315 https://doi.org/10.1038/jid.2012.284
- Weber FC, Nemeth T, Csepregi JZ et al (2015) Neutrophils are required for both the sensitization and elicitation phase of contact hypersensitivity. J Exp Med 212, 15-22 https://doi.org/10.1084/jem.20130062
- Rafei-Shamsabadi DA, van de Poel S, Dorn B et al (2018) Lack of type 2 innate lymphoid cells promotes a type I-driven increased immune response in contact hypersensitivity. J Invest Dermatol 138, 1962-1972 https://doi.org/10.1016/j.jid.2018.03.001
- Jiang X, Park CO, Geddes Sweeney J, Yoo MJ, Gaide O and Kupper TS (2017) Dermal gammadelta T cells do not freely re-circulate out of skin and produce IL-17 to promote neutrophil infiltration during primary contact hypersensitivity. PLoS One 12, e0169397 https://doi.org/10.1371/journal.pone.0169397
- Nielsen MM, Lovato P, MacLeod AS et al (2014) IL-1beta-dependent activation of dendritic epidermal T cells in contact hypersensitivity. J Immunol 192, 2975-2983 https://doi.org/10.4049/jimmunol.1301689
- Shimizuhira C, Otsuka A, Honda T et al (2014) Natural killer T cells are essential for the development of contact hypersensitivity in BALB/c mice. J Invest Dermatol 134, 2709-2718 https://doi.org/10.1038/jid.2014.200
- Kim HS, Lee MB, Lee D et al (2019) The regulatory B cell-mediated peripheral tolerance maintained by mast cell IL-5 suppresses oxazolone-induced contact hypersensitivity. Sci Adv 5, eaav8152 https://doi.org/10.1126/sciadv.aav8152
- Law SH, Chan ML, Marathe GK, Parveen F, Chen CH and Ke LY (2019) An updated review of lysophosphatidylcholine metabolism in human diseases. Int J Mol Sci 20, 1149 https://doi.org/10.3390/ijms20051149
- Liu P, Zhu W, Chen C et al (2020) The mechanisms of lysophosphatidylcholine in the development of diseases. Life Sci 247, 117443 https://doi.org/10.1016/j.lfs.2020.117443
- Fuchs B, Schiller J, Wagner U, Hantzschel H and Arnold K (2005) The phosphatidylcholine/lysophosphatidylcholine ratio in human plasma is an indicator of the severity of rheumatoid arthritis: investigations by 31P NMR and MALDITOF MS. Clin Biochem 38, 925-933 https://doi.org/10.1016/j.clinbiochem.2005.06.006
- Kabarowski JH (2009) G2A and LPC: regulatory functions in immunity. Prostaglandins Other Lipid Mediat 89, 73-81 https://doi.org/10.1016/j.prostaglandins.2009.04.007
- Yoder M, Zhuge Y, Yuan Y et al (2014) Bioactive lysophosphatidylcholine 16:0 and 18:0 are elevated in lungs of asthmatic subjects. Allergy Asthma Immunol Res 6, 61-65 https://doi.org/10.4168/aair.2014.6.1.61
- Arbibe L, Koumanov K, Vial D et al (1998) Generation of lyso-phospholipids from surfactant in acute lung injury is mediated by type-II phospholipase A2 and inhibited by a direct surfactant protein A-phospholipase A2 protein interaction. J Clin Invest 102, 1152-1160 https://doi.org/10.1172/JCI3236
- Zhuge Y, Yuan Y, van Breemen R et al (2014) Stimulated bronchial epithelial cells release bioactive lysophosphatidylcholine 16:0, 18:0, and 18:1. Allergy Asthma Immunol Res 6, 66-74 https://doi.org/10.4168/aair.2014.6.1.66
- Bansal P, Gaur SN and Arora N (2016) Lysophosphatidylcholine plays critical role in allergic airway disease manifestation. Sci Rep 6, 27430 https://doi.org/10.1038/srep27430
- Yan JJ, Jung JS, Lee JE et al (2004) Therapeutic effects of lysophosphatidylcholine in experimental sepsis. Nat Med 10, 161-167 https://doi.org/10.1038/nm989
- Hong CW, Kim TK, Ham HY et al (2010) Lysophosphatidylcholine increases neutrophil bactericidal activity by increasement of azurophil granule-phagosome fusion via glycine. GlyR alpha 2/TRPM2/p38 MAPK signaling. J Immunol 184, 4401-4413 https://doi.org/10.4049/jimmunol.0902814
- Lee HJ, Ko HJ, Song DK and Jung YJ (2018) Lysophosphatidylcholine promotes phagosome maturation and regulates inflammatory mediator production by means of the protein kinase A-phosphatidylinositol 3 kinase-p38 mitogenactivated protein kinase signaling pathway during mycobacterium tuberculosis infection in mouse macrophages. Front Immunol 9, 920 https://doi.org/10.3389/fimmu.2018.00920
- Zhu X, Learoyd J, Butt S et al (2007) Regulation of eosinophil adhesion by lysophosphatidylcholine via a non-storeoperated Ca2+ channel. Am J Respir Cell Mol Biol 36, 585-593 https://doi.org/10.1165/rcmb.2006-0391OC
- Fox LM, Cox DG, Lockridge JL et al (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7, e1000228 https://doi.org/10.1371/journal.pbio.1000228
- Maricic I, Girardi E, Zajonc DM and Kumar V (2014) Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease. J Immunol 193, 4580-4589 https://doi.org/10.4049/jimmunol.1400699
- Hasegawa H, Lei J, Matsumoto T, Onishi S, Suemori K and Yasukawa M (2011) Lysophosphatidylcholine increases the suppressive function of human naturally occurring regulatory T cells by means of TGF-beta production. Biochem Biophys Res Commun 415, 526-531 https://doi.org/10.1016/j.bbrc.2011.10.119
- Berdyshev E, Goleva E, Bronova I et al (2018) Lipid abnormalities in atopic skin are driven by type 2 cytokines. JCI Insight 3, e98006 https://doi.org/10.1172/jci.insight.98006
- Quinn MT, Parthasarathy S and Steinberg D (1988) Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A 85, 2805-2809 https://doi.org/10.1073/pnas.85.8.2805
- Hattori T, Obinata H, Ogawa A et al (2008) G2A plays proinflammatory roles in human keratinocytes under oxidative stress as a receptor for 9-hydroxyoctadecadienoic acid. J Invest Dermatol 128, 1123-1133 https://doi.org/10.1038/sj.jid.5701172
- Paust S, Gill HS, Wang BZ et al (2010) Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigenspecific memory of haptens and viruses. Nat Immunol 11, 1127-1135 https://doi.org/10.1038/ni.1953
- Ye P, Rodriguez FH, Kanaly S et al (2001) Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194, 519-527 https://doi.org/10.1084/jem.194.4.519
- Miyamoto M, Prause O, Sjostrand M, Laan M, Lotvall J and Linden A (2003) Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol 170, 4665-4672 https://doi.org/10.4049/jimmunol.170.9.4665
- Sun D, Novotny M, Bulek K, Liu C, Li X and Hamilton T (2011) Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicingregulatory factor SF2 (ASF). Nat Immunol 12, 853-860 https://doi.org/10.1038/ni.2081
- Geha M, Tsokos MG, Bosse RE et al (2017) IL-17A produced by innate lymphoid cells is essential for intestinal ischemia-reperfusion injury. J Immunol 199, 2921-2929 https://doi.org/10.4049/jimmunol.1700655
- Le LQ, Kabarowski JH, Weng Z et al (2001) Mice lacking the orphan G protein-coupled receptor G2A develop a late-onset autoimmune syndrome. Immunity 14, 561-571 https://doi.org/10.1016/S1074-7613(01)00145-5
- Kern K, Schafer SMG, Cohnen J et al (2018) The G2A receptor controls polarization of macrophage by determining their localization within the inflamed tissue. Front Immunol 9, 2261 https://doi.org/10.3389/fimmu.2018.02261
- Frasch SC, McNamee EN, Kominsky D et al (2016) G2A signaling dampens colitic inflammation via production of IFN-gamma. J Immunol 197, 1425-1434 https://doi.org/10.4049/jimmunol.1600264
- Obinata H and Izumi T (2009) G2A as a receptor for oxidized free fatty acids. Prostaglandins Other Lipid Mediat 89, 66-72 https://doi.org/10.1016/j.prostaglandins.2008.11.002
- Li HM, Jang JH, Jung JS et al (2019) G2A protects mice against sepsis by modulating kupffer cell activation: cooperativity with adenosine receptor 2b. J Immunol 202, 527-538 https://doi.org/10.4049/jimmunol.1700783
- Engeman T, Gorbachev AV, Kish DD and Fairchild RL (2004) The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. J Leukoc Biol 76, 941-949 https://doi.org/10.1189/jlb.0304193
- He D, Wu L, Kim HK, Li H, Elmets CA and Xu H (2009) IL-17 and IFN-gamma mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol 183, 1463-1470 https://doi.org/10.4049/jimmunol.0804108
- Kim G, Jeong H, Youn H et al (2020) Anti-inflammatory mechanisms of suppressors of cytokine signaling target ROS via NRF-2/thioredoxin induction and inflammasome activation in macrophages. BMB Rep 53, 640-645 https://doi.org/10.5483/BMBRep.2020.53.12.161