DOI QR코드

DOI QR Code

재배종 고구마[Ipomoea batatas L. (Lam)]의 기원종에 관한 분자생물학적 연구 동향

Current status on the molecular biological research for the origin of cultivated sweetpotato [Ipomoea batatas L. (Lam)]

  • 이신우 (경상국립대학교, 생명과학대학, 항노화신소재과학과) ;
  • 김윤희 (경상국립대학교, 사범대학, 생물교육과(농업생명과학연구원))
  • Lee, Shin Woo (Department of Plant & Biomaterials Science, Chilam Campus, Gyeongsang National University) ;
  • Kim, Yun-Hee (Department of Biology Education, College of Education, IALS, Gyeongsang National University)
  • 투고 : 2021.10.15
  • 심사 : 2021.12.10
  • 발행 : 2021.12.31

초록

재배종 고구마 [Ipomoea batatas L. (Lam)]의 정확한 기원종은 아직 밝혀지지 않았으며 다양한 가설들이 보고되었다. 재배종과 동일한 batatas 그룹에 속한 야생종을 대상으로 RFLP 패턴, microsatellite 마커, SNP 마커, FISH 기법, 반수체에 대한 게놈분석 등의 비교 연구에 의하면 I. trifida, I. leucantha, I. littoralis, I. tabascana, I. tenuissima, I. tiliacea, I. triloba 등이 가능성이 있는 것으로 제안되었다. 그러나, 최근의 진보된 유전체분석기술과 자연상태에서 수평전이현상에 의하여 재배종 고구마 및 다양한 야생종들의 염색체 내 삽입된 T-DNA의 유전자 구조, 삽입위치, 유전자 재배열 등의 특성을 조사한 연구 결과들을 종합하여 보면 기존에 제안된 이들보다 오래된 조상종이 존재할 것이라는 새로운 가설이 제시되었다.

Several hypotheses for the origin of cultivated sweetpotato [Ipomoea batatas L. (Lam)] have been suggested but the exact progenitor is still unknown. Based on the results of RFLP patterns, microsatellite markers, SNP markers, FISH analyses, and genome analyses of haplotypes, wild species belonging to batatas group, I. trifida, I. leucantha, I. littoralis, I. tabascana, I. tenuissima, I. tiliacea, and I. triloba have been suggested as a progenitor. However, recently, advanced genomic technologies and characterization of the inserted T-DNA fragments of Agrobacterium in the genome of cultivated sweetpotato and wild species through horizontal gene transfer suggest that there may be an older progenitor than the wild species suggested so far.

키워드

참고문헌

  1. Austin DF (1987) The taxonomy, evolution and genetic diversity of sweet potatoes and related wild species, in: Exploration, maintenance and utilization of sweet potato genetic resources, in: Proceedings of the First Planning Conference, Lima, Peru, International Potato Center (CIP), pp 27-59
  2. Buteler MI, Jarret RL, LaBonte DR (1999) Sequence characterization of microsatellites in diploid and polyploid Ipomoea. Theor Appl Genet 99:123-132 https://doi.org/10.1007/s001220051216
  3. Chen K, Dorlhac de Borne F, Szegedi E, Otten L (2014) Deep sequencing of the ancestral tobacco species Nicotiana tomentosiformis reveals multiple T-DNA inserts and a complex evolutionary history of natural transformation in the genus Nicotiana. Plant J 80:669-682 https://doi.org/10.1111/tpj.12661
  4. Chen K, Borne FD, Julio E, Obszynski J, Pale P, Otten L (2016) Rootspecific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum. Plant J 87:258-269 https://doi.org/10.1111/tpj.13196
  5. Freyre R, Iwanaga M, Orjeda G (1991) Use of Ipomoea trifida (HBK.) G. Don germplasm for sweet potato improvement. Part 2. Fertility of synthetic hexaploids and triploids with 2n gametes of I. trifida, and their inter specific crossability with sweet potato. Genome 34:209-214 https://doi.org/10.1139/g91-033
  6. Furner IJ, et al. (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319(6052):422-427 https://doi.org/10.1038/319422a0
  7. Jarret RL, Gawe N, Whittemore A (1992) Phylogenetic Relationships of the Sweetpotato [Ipomoea batatas (L.) Lam.]. J Amer Soc Hort Sci 117:633-637 https://doi.org/10.21273/JASHS.117.4.633
  8. Khoury CK, Heider B, Castaneda-Alvarez NP, Achicanoy HA, Sosa CC, Miller RE, Scotland RW, Wood JR, Rosse G, Eserman LA, Jarret RL, Yencho GC, Bernau V, Juarez H, Sotelo S, Haan S, Struik PC (2015) Distributions, ex situ conservation priorities, and genetic resource potential of crop wild relatives of sweetpotato [Ipomoea batatas (L.) Lam., I. series Batatas]. Front Plant Sci 6:251-265 https://doi.org/10.3389/fpls.2015.00251
  9. Kyndt T, Quispea D, Zhaic H, Jarret R, Ghislain M, Liu Q, Gheysen G, Kreuze JF (2015) The genome of cultivated sweetpotato contains Agrobacterium T-DNAs with expressed genes: an example of a naturally transgenic food crop. Proc Natl Acad Sci USA 112:5844-5849 https://doi.org/10.1073/pnas.1419685112
  10. Lee SW, Kim YH (2020) Scientific considerations for the biosafety of the off-target effects of gene editing in crops. J Plant Biotechnol 47:185-193 https://doi.org/10.5010/JPB.2020.47.3.185
  11. Munoz-Rodriguez P, Carruthers T, Wood JRI, Williams BRM, Kevin Weitemier K, Kronmiller B, Ellis D, Anglin NL, Longway L, Harris SA, Rausher MD, Kelly S, Liston A, Scotland RW (2018) Reconciling conficting phylogenies in the origin of sweetpotato and dispersal to polynesia. Curr Biol 28:1246-1256 https://doi.org/10.1016/j.cub.2018.03.020
  12. Nishiyama I (1971) Evaluation and domestication of sweet potato. Bot Mag Tokyo 84:377-387 https://doi.org/10.15281/jplantres1887.84.377
  13. Orjeda J, Freyre R, Iwanaga M (1990) Production of 2n pollen in diploid Ipomoea trifida, a putative wild ancestor of sweet potato. J Hered 81:462-467 https://doi.org/10.1093/oxfordjournals.jhered.a111026
  14. Ozias-Akins P, Jarret RL (1994) Flow cytometric determination of ploidy levels in Ipomoea. J Am Soc Hortic Sci 119:110-115 https://doi.org/10.21273/jashs.119.1.110
  15. Quispe-Huamanquis DG, Gheysen G, Yang J, Jarret R, Rossel G, Kreuze JF (2019) The horizontal gene transfer of Agrobacterium T-DNAs into the series Batatas (Genus Ipomoea) genome is not confined to hexaploid sweetpotato. Sci Rep 9:12584-12597 https://doi.org/10.1038/s41598-019-48691-3
  16. Rajapakse S, Sasanda D, Nilmalgoda, Molnar M, Ballard RE, Austin DF, and Bohacc JR (2004) Phylogenetic relationships of the sweetpotato in Ipomoea series Batatas (Convolvulaceae) based on nuclear β-amylase gene sequences. Mol Phylogenet Evol 30:623-632 https://doi.org/10.1016/S1055-7903(03)00249-5
  17. Shiotani I (1987) Genomic structure and the gene flow in sweet potato and related species, in: P. Gregory, (Ed.), Exploration, maintenance and utilization of sweet potato genetic resources. Rep 1st Sweet Potato Planning Conference CIP, Lima, Peru, pp 61-73
  18. Spano L, Pompon M, Costantino P, van Slogteren GMS, Tempe J (1982) Identificationof T-DNA in the root-inducing plasmid of the agropine type Agrobacterium rhizogenes 1855. Plant Mol Biol 1:291-304 https://doi.org/10.1007/BF00027560
  19. Srisuwan S, Sihachakr D, Sonja Siljak-Yakovlev S (2006) The origin and evolution of sweet potato (Ipomoea batatas Lam.) and its wild relatives through the cytogenetic approaches. Plant Sci 171:424-433 https://doi.org/10.1016/j.plantsci.2006.05.007
  20. Tanaka N (2008) Horizontal gene transfer in Agrobacterium: from Biology to Biotechnology, eds T. Tzfira and V. Citovsky (NewYork, NY: Springer), 623-647
  21. Yang J, Moeinzadeh M-H, Kuh H, Helmuth J, Xiao P, Haas S, Liu G, Zheng J, Sun Z, Fan W, Deng G, Wang H, Hu F, Zhao S, Fernie AR, Boerno S, Timmermann B, Zhang P, Vingron M (2017) Haplotype-resolved sweetpotato genome traces back its hexaploidization history. Nat Plant 9:696-712
  22. White FD, Garfinkel J, Huffman GA, Gordon MP, Nester EW (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301:348-350 https://doi.org/10.1038/301348a0
  23. Wu S, Lau KH, Cao Q, Hamilton JP, Sun H, Zhou C, Eserman L, Gemenet DC, Olukolu BA, Wang H, Crisovan E, Godden GT, Jiao C, Wang X, Kitavi M, Manrique-Carpintero N, Vaillancourt B, Wiegert-Rininger K, Yang X, Bao K, Schaff J, Kreuze J, Gruneberg W, Khan A, Ghislain M, Ma D, Jiang J, Mwanga ROM, Leebens-Mack J, Coin LJM, Yencho GC, Buell CR, Fei Z (2018) Genome sequences of two diploid wild relatives of cultivated sweetpotato reveal targets for genetic improvement. Nat Commun 9:4580-4592 https://doi.org/10.1038/s41467-018-06983-8