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The Author Response: A Case Study on Engineering Failure Analysis of = m)

Link Chain

The authors thank Dr Yu for his interest in our findings on engi-
neering failure analysis of link chains [1] and his valuable criticism
of our findings [2]. We respond to his comments as follows, focus-
sing on the content of the question (Figs. 1 and 2).

1. Response revised on FEA category in this paper: This article is
written for supplementation of stress analysis parts (rela-
tively idealised and straightforward structure, simplifying
the loads and material property assumptions, etc.) for crane
chain in the existing paper [1]. In material properties, an
elastic material model for stress analysis, which was conduct-
ed in an existing paper, was used to re-evaluate plastic
collapse due to the Working Load Limit (WLL) in each instal-
lation condition. The analysis results show that high stress
(total stress) at the junction of the barrel and that of curva-
ture of the crane chain are similar in the area where the
crane chain was broken. Compared with the correct installa-
tion conditions, when high stress is applied, the incorrect
installation condition evinced a breakage. For determining
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the crane chain’s wall thickness. It is shown that the results
of this analysis support the results of the fractographic anal-
ysis presented in the original paper.

. Additional explanation of the fractographic analysis: Accord-

ing to your comments on the paper, you claim that “the crack
likely initiated around the chain inner surface, where the
presence of high tensile stress under tension load or small
stresses under bending load while a ‘crushed damage’ area
was found there.” However, the crushed damage observed
in the chain’s inner surface cannot be formed by uniaxial ten-
sion load because the inner surface of the chain at this posi-
tion was not contacted with other chains on the condition
that the crane chain was installed correctly, as shown in
Fig. 7 [1] A in the paper. Accordingly, we concluded that
the crushed damage was possibly formed by an improperly
installed crane chain inducing abnormal interlocking of the
chains (Fig. 3).

Also, the step-like topographies observed in the fracture sur-

the membrane and bending stress components, the total
stress distribution was obtained from elastic stress analysis,
and linearised on stress component integrated along the
cross-section of Stress Classification Lines (SCLs) through
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face in Fig. 4B [1] and 5C [1] is the unique morphology not usually
identified in tensile overload fracture surface [3]. Under uniaxial
tension load conditions, the fracture surface shows the equiaxed
dimples in the flat surface and the elongated dimples in the in-
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Fig. 1. Boundary and loading conditions of elastic stress analysis in each installation condition. (A) Correct installation condition. (B) Incorrect installation condition.
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Fig. 2. Results of elastic stress analysis of correct installation condition.
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Fig. 3. Results of elastic stress analysis of incorrect installation condition.

clined region having the cup and cone shape. For this reason, it is
concluded that the shear fracture consisting of elongated dimples
and step-like topographies may be usually formed by bending or
shear overload rather than uniaxial load condition [4] and the
width reduction of the link chain and the crushed damage formed
by the compressive load on the side of the link chain were consid-
ered as the pieces of evidence of bending load rather than uniaxial
tension load. Therefore, we concluded that the left side of the link
chain was fractured in advance by bending load due to improper
installation, and later the right side of the link chain was fractured
due to uniaxial load beyond the material strength after failing the
left side of the chain.
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