과제정보
This study was financially supported by the Aviation Industry Joint Fund (No.6141B05080407) and Natural Science Research Project of Guangling College of Yangzhou University (No. ZKZD18004).
참고문헌
- A. Alhudhaif, K. Polat, O. Karaman, Determination of COVID-19 pneumonia based on generalized convolutional neural network model from chest X-ray images, Expert Syst. Appl. 180 (2021) 115141, 115141. https://doi.org/10.1016/j.eswa.2021.115141
- S. Nambiar, J.T.W. Yeow, Polymer-composite materials for radiation protection, ACS Appl. Mater. Interfaces 4 (11) (2012) 5717-5726. https://doi.org/10.1021/am300783d
- P.F. Lou, X.B. Teng, Q.X. Jia, Y.Q. Wang, L.Q. Zhang, Preparation and structure of rare earth/thermoplastic polyurethane fiber for X-ray shielding, J. Appl. Polym. Sci. 136 (17) (2019). https://doi:10.1002/app.47435.
- L. Liu, L. He, C. Yang, W. Zhang, R.G. Jin, L.Q. Zhang, In situ reaction and radiation protection properties of Gd(AA)(3)/NR composites, Macromol. Rapid Commun. 25 (12) (2004) 1197-1202. https://doi.org/10.1002/marc.200400077
- S. Jayakumar, T. Saravanan, J. Philip, Preparation, characterization and X-ray attenuation property of Gd2O3-based nanocomposites, Appl. Nanosci. 7 (8) (2017) 919-931. https://doi.org/10.1007/s13204-017-0631-6
- M.I. Sayyed, A.A. Ati, M.H.A. Mhareb, K.A. Mahmoud, K.M. Kaky, S.O. Baki, M.A. Mahdi, Novel tellurite glass (60-x)TeO2-10GeO(2)-20ZnO-10BaO-xBi(2) O(3)for radiation shielding, J. Alloys Compd. 844 (2020). https://doi:10.1016/j.jallcom.2020.155668.
- P.P. Jiang, J.B. Chen, X.M. Lin, Chinese Pat., 101319025, Jiangnan University, Peop. Rep, China, 2010.
- N. Haruo, U. Hiroshi, N. Kunikazu, Japanese Pat., 53063310, Kyowa Gas Chemical Industry Co., Ltd., Japan, 1978.
- C.H. Wang, S. Wang, Y.J. Zhang, Z.F. Wang, J.L. Liu, M. Zhang, Self-polymerization and co-polymerization kinetics of gadolinium methacrylate, J. Rare Earths 36 (3) (2018) 298-303. https://doi.org/10.1016/j.jre.2017.09.015
- Y.J. Zhang, X.T. Guo, C.H. Wang, D.F. Wu, M. Zhang, Self-polymerization and co-polymerization kinetics of lead methacrylate, Rare Met. 40 (3) (2021) 736-742. https://doi.org/10.1007/s12598-019-01358-4
- N. Kazemi, T.A. Duever, A. Penlidis, Demystifying the estimation of reactivity ratios for terpolymerization systems, AIChE J. 60 (5) (2014) 1752-1766. https://doi.org/10.1002/aic.14439
- A. Jukic, M. Rogosic, E. Vidovic, Z. Janovic, Terpolymerization kinetics of methyl methacrylate or styrene/dodecyl methacrylate/octadecyl methacrylate systems, Polymer International, Poly. Int 56 (1) (2006) 112-120.
- A.D. Azzahari, R. Yahya, M.R. Ahmad, M.B. Zubir, New terpolymers from nbutyl acrylate, glycidyl methacrylate and tetrahydrofurfuryl acrylate: synthesis, characterisation and estimation of reactivity ratios. Fibers and Polymers, Fiber, Polymja 15 (3) (2014) 437-445. https://doi.org/10.1007/s12221-014-0437-z
- I. Soljic, A. Jukic, Z. Janovic, Terpolymerization kinetics of N,N-dimethylaminoethyl methacrylate/alkyl methacrylate/styrene systems. Polymer Engineering & Science, Polym. Eng. Sci. 50 (3) (2009) 577-584.
- K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code, Nucl. Eng. Technol. 51 (2019) 1835-1841. https://doi.org/10.1016/j.net.2019.05.013
- O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kacal, An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys, Nucl. Eng. Technol. 51 (3) (2019) 853-859. https://doi.org/10.1016/j.net.2018.12.014
- Y. Wang, G.K. Wang, T. Hu, S.P. Wen, S. Hu, L. Liu, Enhanced photon shielding efficiency of a flexible and lightweight rare earth/polymer composite: a Monte Carlo simulation study, Nucl. Eng. Technol. 52 (7) (2020) 1565-1570. https://doi.org/10.1016/j.net.2019.12.028
- J.J.M. Goeij, Nuclear analytical methods in the life sciences, Biol. Trace Elem. Res. 43-45 (1) (1994) 9-17. https://doi.org/10.1007/BF02917295
- S. Srikanth, G.J.N. Raju, Quantitative study of trace elements in coal and coal related ashes using PIXE, J. Geol. Soc. India 94 (5) (2019) 533-537. https://doi.org/10.1007/s12594-019-1351-1
- W. Maenhaut, Present role of PIXE in atmospheric aerosol research, Nucl. Instrum. Methods B 363 (2015) 86-91. https://doi.org/10.1016/j.nimb.2015.07.043
- J. Reyes-Herrera, J. Miranda, O.G. de Lucio, Simultaneous PIXE and XRF elemental analysis of atmospheric aerosols, Microchem. J. 120 (2015) 40-44. https://doi.org/10.1016/j.microc.2015.01.004
- J. Cruz, M. Manso, V. Corregidor, R.J.C. Silva, E. Figueiredo, M.L. Carvalho, L.C. Alves, Surface analysis of corroded XV-XVI century copper coins by µ-XRF and µ-PIXE/µ-EBS self-consistent analysis, Mater. Char. 161 (2020). https://doi:10.1016/j.matchar.2020.110170.
- X.F. Li, G.F. Wang, J.H. Chu, L.D. Yu, Charge integration in external PIXE-PIGE for the analysis of aerosol samples, Instrum. Meth. B. 289 (2012) 1-4. https://doi.org/10.1016/j.nimb.2012.08.009
- E. Punzon-Quijorna, M. Kelemen, P. Vavpeti, R. Kavalar, S.K. Fokter, Particle induced x-ray emission (PIXE) for elemental tissue imaging in hip modular prosthesis fracture case, Instrum. Meth. B. 462 (2020) 182-186. https://doi.org/10.1016/j.nimb.2019.10.019
- A.R. Justino, N. Canha, C. Gamelas, J.T. Coutinho, S.M. Almeida, Contribution of micro-pixe to the characterization of settled dust events in an urban area affected by industrial activities, J. Radioanal. Nucl. Chem. 322 (3) (2019) 1953-1964. https://doi.org/10.1007/s10967-019-06860-8
- K. Nadeem, J. Hussain, N.U. Haq, A.U. Haq, I. Ahmad, A proton induced X-ray emission (PIXE) analysis of concentration of major/trace and toxic elements in broiler gizzard and flesh of Tehsil Gujar Khan area in Pakistan, Nucl. Eng. Technol. 51 (8) (2019) 2042-2049. https://doi.org/10.1016/j.net.2019.06.005
- S. Kavlak, A. Guner, Z.M.O. Rzayev, Functional terpolymers containing vinylphosphonic acid: the synthesis and characterization of poly(vinylphosphonic acid-co-styrene-co-maleic anhydride), J. Appl. Polym. Sci. 125 (5) (2012) 3617-3629. https://doi.org/10.1002/app.36522
- P.G. Sanghvi, N.K. Pokhriyal, S. Devi, Effect of partitioning of monomer on the reactivities of monomers in microemulsion, J. Appl. Polym. Sci. 84 (10) (2002) 1832-1837. https://doi.org/10.1002/app.10401
- T. Alfrey, G. Goldfinger, The mechanism of copolymerization, The Journal of Chemical Physics, J. Chem. Phys. 12 (6) (1944) 205-209. https://doi.org/10.1063/1.1723934
- N. Kazemi, T.A. Duever, A. Penlidis, Demystifying the estimation of reactivity ratios for terpolymerization systems, AIChE J. 60 (5) (2014) 1752-1766. https://doi.org/10.1002/aic.14439
- N. Kazemi, T.A. Duever, A. Penlidis, A powerful estimation scheme with the error-in-variables-model for nonlinear cases: reactivity ratio estimation examples, Comput. Chem. Eng. 48 (2013) 200-208. https://doi.org/10.1016/j.compchemeng.2012.08.015
- A. Scott, N. Kazemi, A. Penlidis, AMPS/AAm/AAc terpolymerization: experimental verification of the EVM framework for ternary reactivity ratio estimation, Processes 5 (4) (2017) 9-24. https://doi.org/10.3390/pr5010009
- M. Riahinezhad, N. Kazemi, N. McManus, A. Penlidis, Effect of ionic strength on the reactivity ratios of acrylamide/acrylic acid (sodium acrylate) copolymerization, J. Appl. Polym. Sci. 131 (20) (2014) 40949.
- N. Kazemi, T.A. Duever, A. Penlidis, Reactivity ratio estimation from cumulative copolymer composition Data,Macromol, React. Eng. 5 (9-10) (2011) 385-403. https://doi.org/10.1002/mren.201100009
- F.K. Yousefi, A. Jannesari, S. Pazokifard, M.R. Saeb, A.J. Scott, A. Penlidis, Reactivity ratio estimation from cumulative copolymer composition Data,- Macromol, React. Eng. 13 (4) (2019) 1900014. https://doi.org/10.1002/mren.201900014
- I. Skeist, Copolymerization: the composition distribution curve, J. Am. Chem. Soc. 68 (9) (1946) 1781-1784. https://doi.org/10.1021/ja01213a031
- P.M. Reilly, H. Patino-Leal, A bayesian study of the error-in-variables model, Technometrics 23 (3) (1981) 221-231. https://doi.org/10.2307/1267784
- M. Dube, R.A. Sanayei, A. Penlidis, K.F. O'Driscoll, P.M. Reilly, A microcomputer program for estimation of copolymerization reactivity ratios, J. Polym. Sci., Polym. Chem. Ed. 29 (5) (1991) 703-708. https://doi.org/10.1002/pola.1991.080290512
- A.L. Polic, T.A. Duever, A. Penlidis, Case studies and literature review on the estimation of copolymerization reactivity ratios, J. Polym. Sci., Polym. Chem. Ed. 36 (5) (1998) 813-822. https://doi.org/10.1002/(SICI)1099-0518(19980415)36:5<813::AID-POLA14>3.0.CO;2-J
- A. Scott, A. Penlidis, Computational package for copolymerization reactivity ratio estimation: improved access to the error-in-variables-model, Processes, Processes 6 (1) (2018) 8. https://doi.org/10.3390/pr6010008
- A.J. Scott, A. Penlidis, Binary vs. ternary reactivity ratios: appropriate estimation procedures with terpolymerization data, Eur. Polym. J. 105 (2018) 442-450. https://doi.org/10.1016/j.eurpolymj.2018.06.021