DOI QR코드

DOI QR Code

Virtual calibration of whole-body counters to consider the size dependency of counting efficiency using Monte Carlo simulations

  • Park, MinSeok (National Radiation Emergency Center, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Han Sung (National Radiation Emergency Center, Korea Institute of Radiological and Medical Sciences) ;
  • Yoo, Jaeryong (National Radiation Emergency Center, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Chan Hyeong (Department of Nuclear Engineering, Hanyang University) ;
  • Jang, Won Il (National Radiation Emergency Center, Korea Institute of Radiological and Medical Sciences) ;
  • Park, Sunhoo (National Radiation Emergency Center, Korea Institute of Radiological and Medical Sciences)
  • Received : 2021.02.25
  • Accepted : 2021.06.12
  • Published : 2021.12.25

Abstract

The counting efficiencies obtained using anthropomorphic physical phantoms are generally used in whole-body counting measurements to determine the level of internal contamination in the body. Geometrical discrepancies between phantoms and measured individuals affect the counting efficiency, and thus, considering individual physical characteristics is crucial to improve the accuracy of activity estimates. In the present study, the counting efficiencies of whole-body counting measurements were calculated considering individual physical characteristics by employing Monte Carlo simulation for calibration. The NaI(Tl)-based stand-up and HPGe-based bed type commercial whole-body counters were used for calculating the counting efficiencies. The counting efficiencies were obtained from 19 computational phantoms representing various shapes and sizes of the measured individuals. The discrepancies in the counting efficiencies obtained using the computational and physical phantoms range from 2% to 33%, and the results indicate that the counting efficiency depends on the size of the measured individual. Taking into account the body size, the equations for estimating the counting efficiencies were derived from the relationship between the counting efficiencies and the body-build index of the subject. These equations can aid in minimizing the size dependency of the counting efficiency and provide more accurate measurements of internal contamination in whole-body counting measurements.

Keywords

Acknowledgement

This study was supported by a grant of the Korea Institute of Radiological and Medical Sciences (KIRAMS), funded by Ministry of Science and ICT(MSIT), Republic of Korea. (No.50535-2021) The authors would like to express their gratitude to Choonsik Lee at the National Cancer Institute, X. George Xu at the Rensselaer Polytechnic Institute, Richard Kramer at the Federal University of Pernambuco, and Kaoru Sato at the Japan Atomic Energy Agency for providing valuable data on computational phantoms.

References

  1. K. Tani, Y. Igarashi, E. Kim, T. Iimoto, O. Kurihara, Monte-Carlo simulations with mathematical phantoms to investigate the effectiveness of a whole-body counter for thyroid measurement, Radiat. Meas. 135 (2020), https://doi.org/10.1016/j.radmeas.2020.106335. http://www.ncbi.nlm.nih.gov/pubmed/106335.
  2. O. Kurihara, C. Li, M.A. Lopez, E. Kim, K. Tani, T. Nakano, C. Takada, T. Momose, M. Akashi, Experiences of population monitoring using whole-body counters in response to the Fukushima nuclear accident, Health Phys. 115 (2) (2018) 259-274, https://doi.org/10.1097/HP.0000000000000862. https://www.ncbi.nlm.nih.gov/pubmed/29957688.
  3. E. Kim, O. Kurihara, N. Kunishima, T. Nakano, K. Tani, M. Hachiya, T. Momose, T. Ishikawa, S. Tokonami, M. Hosoda, M. Akashi, Early intake of radiocesium by residents living near the TEPCO Fukushima Dai-ichi nuclear power plant after the accident. Part 1: internal doses based on whole-body measurements by NIRS, Health Phys. 111 (5) (2016) 451-464, https://doi.org/10.1097/HP.0000000000000563. https://www.ncbi.nlm.nih.gov/pubmed/27682904.
  4. N. Matsuda, A. Kumagai, A. Ohtsuru, N. Morita, M. Miura, M. Yoshida, T. Kudo, N. Takamura, S. Yamashita, Assessment of internal exposure doses in Fukushima by a whole body counter within one month after the nuclear power plant accident, Radiat. Res. 179 (6) (2013) 663-668, https://doi.org/10.1667/RR3232.1. https://www.ncbi.nlm.nih.gov/pubmed/23642080.
  5. Health Physics Society, American National Standard: specifications for the bottle manikin absorption phantom, ANSI/HPS N13 (1999) 35.
  6. R. Toohey, E. Palmer, L. Anderson, C. Berger, N. Cohen, G. Eisele, B. Wachholz, W. Burr Jr., Current status of whole-body counting as a means to detect and quantify previous exposure to radioactive materials, Whole-body Counting Working Group, Health Phys. 60 (Suppl. 1) (1991) 7-42. https://doi.org/10.1097/00004032-199101000-00001
  7. D.R. White, The design and manufacture of anthropomorphic phantoms, Radiat. Protect. Dosim. 49 (1-3) (1993) 359-369, https://doi.org/10.1093/rpd/49.1-3.359.
  8. B. Zhang, M. Mille, X.G. Xu, An analysis of dependency of counting efficiency on worker anatomy for in vivo measurements: whole-body counting, Phys. Med. Biol. 53 (13) (2008) 3463-3475, https://doi.org/10.1088/0031-9155/53/13/004. https://www.ncbi.nlm.nih.gov/pubmed/18547914.
  9. J. Bento, S. Barros, P. Teles, P. Vaz, M. Zankl, Efficiency correction factors of an ACCUSCAN whole-body counter due to the biodistribution of 134Cs, 137Cs and 60Co, Radiat. Protect. Dosim. 155 (1) (2013) 16-24, https://doi.org/10.1093/rpd/ncs308. https://www.ncbi.nlm.nih.gov/pubmed/23188813.
  10. R.J. Shypailo, K.J. Ellis, Whole body counter calibration using Monte Carlo modelling with an array of phantom sizes based on national anthropometric reference data, Phys. Med. Biol. 56 (10) (2011) 2979-2997, https://doi.org/10.1088/0031-9155/56/10/006. https://www.ncbi.nlm.nih.gov/pubmed/21490381.
  11. E. Carinou, V. Koukouliou, M. Budayova, C. Potiriadis, V. Kamenopoulou, The calculation of a size correction factor for a whole-body counter, Nucl. Instrum. Methods Phys. Res. 580 (1) (2007) 197-200, https://doi.org/10.1016/j.nima.2007.05.083.
  12. D. Krstic, O. Cuknic, D. Nikezic, Application of MCNP5 software for efficiency calculation of a whole body counter, Health Phys. 102 (6) (2012) 657-663, https://doi.org/10.1097/HP.0b013e318244152b.
  13. M. Park, J. Yoo, W.H. Ha, S. Park, Y.W. Jin, Measurement and simulation of the counting efficiency of a whole-body counter using a BOMAB phantom inserted with rod sources containing mixed radionuclides, Health Phys. 114 (3) (2018) 282-287, https://doi.org/10.1097/HP.0000000000000752. https://www.ncbi.nlm.nih.gov/pubmed/29360706.
  14. G.H. Kramer, K. Capello, The STANDFAST whole body counter: efficiency as a function of BOMAB phantom size and energy modeled by MCNP5, Health Phys. 92 (3) (2007) 290-296, https://doi.org/10.1097/01.HP.0000246233.61967.3a. https://www.ncbi.nlm.nih.gov/pubmed/17293701.
  15. Y. Chen, R. Qiu, C. Li, Z. Wu, J. Li, Construction of Chinese adult male phantom library and its application in the virtual calibration of in vivo measurement, Phys. Med. Biol. 61 (5) (2016) 2124-2144, https://doi.org/10.1088/0031-9155/61/5/2124. https://www.ncbi.nlm.nih.gov/pubmed/26894453.
  16. S. Kinase, S. Takagi, H. Noguchi, K. Saito, Application of voxel phantoms and Monte Carlo method to whole-body counter calibration, Radiat. Protect. Dosim. 125 (1-4) (2007) 189-193, https://doi.org/10.1093/rpd/ncm197.
  17. M. Takahashi, S. Kinase, R. Kramer, Evaluation of counting efficiencies of a whole-body counter using Monte Carlo simulation with voxel phantoms, Radiat. Protect. Dosim. 144 (1-4) (2011) 407-410, https://doi.org/10.1093/rpd/ncm417.
  18. M. Park, T.E. Kwon, W.H. Ha, C.H. Kim, S. Park, Y.W. Jin, Counting efficiencies determined by Monte Carlo methods for in vivo measurement of 131I activity in thyroid, Health Phys. 117 (4) (2019) 388-395, https://doi.org/10.1097/HP.0000000000001070. https://www.ncbi.nlm.nih.gov/pubmed/30913058.
  19. G.H. Kramer, L.C. Burns, S. Guerriere, Monte Carlo simulation of a scanning detector whole body counter and the effect of BOMAB phantom size on the calibration, Health Phys. 83 (4) (2002) 526-533, https://doi.org/10.1097/00004032-200210000-00011. https://www.ncbi.nlm.nih.gov/pubmed/12240728.
  20. J. Bento, S. Barros, P. Teles, M. Neves, I. Goncalves, J. Corisco, P. Vaz, Monte Carlo simulation of the movement and detection efficiency of a whole-body counting system using a BOMAB phantom, Radiat. Protect. Dosim. 148 (4) (2012) 403-413, https://doi.org/10.1093/rpd/ncr201. https://www.ncbi.nlm.nih.gov/pubmed/21525044.
  21. C.J. Werner, MCNP User's Manual Code Version 6.2, Los Alamos National Laboratory, 2017. LA-UR-17-29981.
  22. ICRP 110, Adult Reference Computational Phantoms vol. 110, Pergamon Press Publication, Oxford, 2009.
  23. C. Lee, D. Lodwick, J. Hurtado, D. Pafundi, J.L. Williams, W.E. Bolch, The UF family of reference hybrid phantoms for computational radiation dosimetry, Phys. Med. Biol. 55 (2) (2010) 339-363, https://doi.org/10.1088/0031-9155/55/2/002. https://www.ncbi.nlm.nih.gov/pubmed/20019401.
  24. C.H. Kim, S.H. Choi, J.H. Jeong, C. Lee, M.S. Chung, HDRK-Man: a whole-body voxel model based on high-resolution color slice images of a Korean adult male cadaver, Phys. Med. Biol. 53 (15) (2008) 4093-4106, https://doi.org/10.1088/0031-9155/53/15/006. https://www.ncbi.nlm.nih.gov/pubmed/18612173.
  25. Y.S. Yeom, J.H. Jeong, C.H. Kim, M.C. Han, B.K. Ham, K.W. Cho, S.B. Hwang, HDRK-Woman: whole-body voxel model based on high-resolution color slice images of Korean adult female cadaver, Phys. Med. Biol. 59 (14) (2014) 3969-3984, https://doi.org/10.1088/0031-9155/59/14/3969. https://www.ncbi.nlm.nih.gov/pubmed/24971755.
  26. X.G. Xu, T.C. Chao, A. Bozkurt, VIP-Man: an image-based whole-body adult male model constructed from color photographs of the visible human project for multi-particle Monte Carlo calculations, Health Phys. 78 (5) (2000) 476-486, https://doi.org/10.1097/00004032-200005000-00003. https://www.ncbi.nlm.nih.gov/pubmed/10772019.
  27. K. Sato, H. Noguchi, Y. Emoto, S. Koga, K. Saito, Japanese adult male voxel phantom constructed on the basis of CT images, Radiat. Protect. Dosim. 123 (3) (2007) 337-344, https://doi.org/10.1093/rpd/ncl101. https://www.ncbi.nlm.nih.gov/pubmed/16905760.
  28. K. Sato, H. Noguchi, Y. Emoto, S. Koga, K. Saito, Development of a Japanese adult female voxel phantom, J. Nucl. Sci. Technol. 46 (9) (2009) 907-913, https://doi.org/10.1080/18811248.2009.9711599.
  29. F. Cassola, V.J. Lima, R. Kramer, H.J. Khoury, FASH and MASH: female and male adult human phantoms based on polygon mesh surfaces: I. Development of the anatomy, Phys. Med. Biol. 55 (1) (2010) 133-162, https://doi.org/10.1088/0031-9155/55/1/009. https://www.ncbi.nlm.nih.gov/pubmed/20009183.
  30. T. Smith, R. Hesp, J. Mackenzie, Total body potassium calibrations for normal and obese subjects in two types of whole body counter, Phys. Med. Biol. 24 (1) (1979) 171-175, https://doi.org/10.1088/0031-9155/24/1/016. https://www.ncbi.nlm.nih.gov/pubmed/107535.
  31. A. Lahham, M. Fulop, M. Vladar, P. Ragan, Body potassium content and radiation dose from 40K to the Slovak population, Health Phys. 74 (3) (1998) 346-349, https://doi.org/10.1097/00004032-199803000-00007.