DOI QR코드

DOI QR Code

The status of NORMs in natural environment adjacent to the Rooppur nuclear power plant of Bangladesh

  • Haydar, Md Abu (Health Physics and Radioactive Waste Management Unit (HPRWMU), Institute of Nuclear Science and Technology (INST), Atomic Energy Research Establishment (AERE), Bangladesh Atomic Energy Commission (BAEC)) ;
  • Hasan, Md Mehade (Department of Physics, Jashore University of Science and Technology) ;
  • Jahan, Imrose (Department of Physics, International University of Business Agriculture and Technology (IUBAT)) ;
  • Fatema, Kanij (Health Physics and Radioactive Waste Management Unit (HPRWMU), Institute of Nuclear Science and Technology (INST), Atomic Energy Research Establishment (AERE), Bangladesh Atomic Energy Commission (BAEC)) ;
  • Ali, Md Idris (Health Physics and Radioactive Waste Management Unit (HPRWMU), Institute of Nuclear Science and Technology (INST), Atomic Energy Research Establishment (AERE), Bangladesh Atomic Energy Commission (BAEC)) ;
  • Paul, Debasish (Health Physics and Radioactive Waste Management Unit (HPRWMU), Institute of Nuclear Science and Technology (INST), Atomic Energy Research Establishment (AERE), Bangladesh Atomic Energy Commission (BAEC)) ;
  • Khandaker, Mayeen Uddin (Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University)
  • Received : 2021.02.01
  • Accepted : 2021.06.12
  • Published : 2021.12.25

Abstract

The Rooppur Nuclear Power Plant (RNPP), the first nuclear power plant in Bangladesh with a capacity of 2.4 GWe, is under construction on the bank of the river Padma, at Rooppur in Bangladesh. Measurement of background radioactivity in the natural environment adjacent to RNPP finds great importance for future perspectives. Soil and sediment samples collected from upstream and downstream positions of the Padma River (adjacent to RNPP) were collected and analyzed by HPGe gamma-ray spectrometry for primordial radionuclides. The average activity concentrations (in Bqkg-1) of 226Ra, 232Th and 40K radionuclides in soil samples were found to be 44.99 ± 3.89, 66.28 ± 6.55 and 553 ± 82.17 respectively. Respective values in sediment samples were found to be 44.59 ± 4.58, 67.64 ± 7.93, 782 ± 108. Relevant radiation hazard indices and dosimetric parameters were calculated and compared with the world average data recommended by US-EPA. Analytical results show non-negligible radiation hazards to the surrounding populace. Measured data will be useful to monitor any change of background radioactivity in the surrounding environment of RNPP following its operation for the generation of nuclear energy.

Keywords

Acknowledgement

The authors are thankful to the Director, Institute of Nuclear Science and Technology (INST) and Head, Health Physics and Radioactive Waste Management Unit (HPRWMU), Atomic Energy Research. Establishment, Bangladesh Atomic Energy Commission, Savar Dhaka, Bangladesh. The first author is especially grateful to Shamima Nasrin and Arun Kumar Deb for their kind cooperation during this study.

References

  1. T.-L. Tsai, C.-C. Lin, T.-W. Wang, T.-C. Chu, Radioactivity concentrations and dose assessment for soil samples around nuclear power plant IV in Taiwan, J. Radiol. Prot. Off. J. Soc. Radiol. Prot. 28 (2008) 347-360, https://doi.org/10.1088/0952-4746/28/3/005.
  2. J. Ferdous, A. Begum, A. Islam, Radioactivity of soil at proposed Rooppur nuclear power plant site in Bangladesh TT -, Int-J-Radiat-Res. 13 (2015) 135-142, https://doi.org/10.7508/ijrr.2015.02.003.
  3. A. Kurnaz, B. Kucukomeroglu, R. Keser, N.T. Okumusoglu, F. Korkmaz, G. Karahan, U. Cevik, Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey), Appl. Radiat. Isot. 65 (2007) 1281-1289, https://doi.org/10.1016/j.apradiso.2007.06.001.
  4. K. Asaduzzaman, M.U. Khandaker, Y.M. Amin, D.A. Bradley, R.H. Mahat, R.M. Nor, Soil-to-root vegetable transfer factors for 226Ra, 232Th, 40K, and 88Y in Malaysia, J. Environ. Radioact. 135 (2014) 120-127, https://doi.org/10.1016/j.jenvrad.2014.04.009.
  5. M.A.R. Iyengar, The national distribution of radiation, in: The Environment Behaviour of Radium in: Technical Report Series N.310, International Atomic Energy Agency, Vienna, 1990. Vienna.
  6. S.M.A. Islam, M. Mehade Hasan, M.I. Ali, D. Paul, M.A. Haydar, Measurement of natural radioactivity in coal, soil and water samples collected from barapukuria coal mine in dinajpur district of Bangladesh, J. Nucl. Part. Phys. 3 (2013) 63-71, https://doi.org/10.5923/j.jnpp.20130304.03.
  7. Y.M. Amin, M.U. Khandaker, A.K.S. Shyen, R.H. Mahat, R.M. Nor, D.A. Bradley, Radionuclide emissions from a coal-fired power plant, Appl. Radiat. Isot. 80 (2013) 109-116, https://doi.org/10.1016/j.apradiso.2013.06.014.
  8. K. Asaduzzaman, M.U. Khandaker, Y.M. Amin, D.A. Bradley, Natural radioactivity levels and radiological assessment of decorative building materials in Bangladesh, Indoor Built Environ. 25 (2014) 541-550, https://doi.org/10.1177/1420326X14562048.
  9. J. Beretka, P.J. Matthew, Natural radioactivity of Australian building materials, industrial wastes and by-products, Health Phys. 48 (1985) 87-95, https://doi.org/10.1097/00004032-198501000-00007.
  10. Sources UNSCEAR, Effects and Risk of Ionization Radiation, Annex A: Exposure from Natural Sources, Report to General Assembly, UN, United Nations Scientific Committee on the Effects of Atomic Radiation, New York, 1993, 1993.
  11. UNSCEAR, Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes, 2000.
  12. M.R. Karim, M.U. Khandaker, K. Asaduzzaman, H.A. Razak, S.B. Yusoff, Radiological risks assessment of building materials ingredients: palm oil clinker and fuel ash, Indoor Built Environ. 28 (2018) 479-491, https://doi.org/10.1177/1420326X18776705.
  13. L. Xinwei, Z. Xiaolan, Measurement of natural radioactivity in sand samples collected from the Baoji Weihe Sands Park, China, Environ. Geol. 50 (2006) 977-982, https://doi.org/10.1007/s00254-006-0266-5.
  14. K. Asaduzzaman, F. Mannan, M.U. Khandaker, M.S. Farook, A. Elkezza, Y.B.M. Amin, S. Sharma, H. Bin Abu Kassim, Assessment of natural radioactivity levels and potential radiological risks of common building materials used in Bangladeshi dwellings, PloS One 10 (2015), e0140667, https://doi.org/10.1371/journal.pone.0140667.
  15. M. Hasan, A. Hossain Chaity, A. Haydar, I. Ali, M.U. Khandaker, Elevated concentrations of terrestrial radionuclides in sand: an essential raw material used in Bangladeshi dwellings, Indoor Built Environ. (2020), 1420326X20924835, https://doi.org/10.1177/1420326X20924835.
  16. National Council on Radiation Protection and Measurements, Knovel (Firm), A Handbook of radioactivity measurements procedures with nuclear data for some biomedically important radionuclides, reevaluated between August 1983 and April 1984, NCRP Rep. No. 58 (1985).
  17. UNSCEAR, Sources and Effects of Ionizing Radiation, Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly, 2008.
  18. V. Ramasamy, G. Suresh, V. Meenakshisundaram, V. Ponnusamy, Horizontal and vertical characterization of radionuclides and minerals in river sediments, Appl. Radiat. Isot. Incl. Data, Instrum. Methods Use Agric. Ind. Med. 69 (2011) 184-195, https://doi.org/10.1016/j.apradiso.2010.07.020.
  19. S. Yasmin, B.S. Barua, M.U. Khandaker, M. Kamal, M. Abdur Rashid, S.F. Abdul Sani, H. Ahmed, B. Nikouravan, D.A. Bradley, The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: geological characteristics and environmental implication, Results Phys 8 (2018) 1268-1274, https://doi.org/10.1016/j.rinp.2018.02.013.
  20. A. El-Gamal, S. Nasr, A. El-Taher, Study of the spatial distribution of natural radioactivity in the upper Egypt Nile River sediments, Radiat, Measure 42 (2007) 457-465, https://doi.org/10.1016/j.radmeas.2007.02.054.
  21. M. Khalil, R. Majumder, M. Kabir, F. Deeba, M. Khan, M. Ali, D. Paul, M. Haydar, S. Islam, Assessment of natural radioactivity levels and identification of minerals in Brahmaputra (Jamuna) river sand and sediment, Bangladesh, Radiat. Protect. Environ. 39 (2016) 204-211, https://doi.org/10.4103/0972-0464.199980.
  22. A. Sroor, S.M. El-Bahi, F. Ahmed, A.S. Abdel-Haleem, Natural radioactivity and radon exhalation rate of soil in southern Egypt, Appl. Radiat. Isot. 55 (2001) 873-879, https://doi.org/10.1016/S0969-8043(01)00123-3.
  23. P. Ziqiang, Y. Yin, G. Mingqiang, Natural radiation and radioactivity in China, Radiat. Protect. Dosim. 24 (1988) 29-38, https://doi.org/10.1093/oxfordjournals.rpd.a080236.
  24. S.M.M.M. Tufail, N. Ahmad, N.M. Mirza, Activity con-centration in building Materials,Centre for nuclear studies, in: Rep. No. CNS-25, Isalamabad Pakistan, slamabad,Pakistan, 1992.
  25. M.U. Khandaker, P.J. Jojo, H.A. Kassim, Y.M. Amin, Radiometric analysis of construction materials using HPGe gamma-ray spectrometry, Radiat. Protect. Dosim. 152 (2012) 33-37, https://doi.org/10.1093/rpd/ncs145.
  26. M.T. Kolo, M.U. Khandaker, H.K. Shuaibu, Natural radioactivity in soils around mega coal-fired cement factory in Nigeria and its implications on human health and environment, Arab. J. Geosci. 12 (2019) 481, https://doi.org/10.1007/s12517-019-4607-6.
  27. R. Khan, M.S. Parvez, Y.N. Jolly, M.A. Haydar, M.F. Alam, M.A. Khatun, M.M.R. Sarker, M.A. Habib, U. Tamim, S. Das, S. Sultana, M.A. Islam, K. Naher, D. Paul, S. Akter, M.H.R. Khan, F. Nahid, R. Huque, M. Rajib, S.M. Hossain, Elemental abundances, natural radioactivity and physicochemical records of a southern part of Bangladesh: implication for assessing the environmental geochemistry, Environ. Nanotechnology, Monit. Manag. 12 (2019) 100225, https://doi.org/10.1016/j.enmm.2019.100225.