DOI QR코드

DOI QR Code

A comparative study of machine learning methods for automated identification of radioisotopes using NaI gamma-ray spectra

  • Galib, S.M. (Department of Nuclear Engineering and Radiation Science, Missouri University of Science and Technology) ;
  • Bhowmik, P.K. (Department of Nuclear Engineering and Radiation Science, Missouri University of Science and Technology) ;
  • Avachat, A.V. (Department of Nuclear Engineering and Radiation Science, Missouri University of Science and Technology) ;
  • Lee, H.K. (Department of Nuclear Engineering, University of New Mexico)
  • 투고 : 2021.03.27
  • 심사 : 2021.06.12
  • 발행 : 2021.12.25

초록

This article presents a study on the state-of-the-art methods for automated radioactive material detection and identification, using gamma-ray spectra and modern machine learning methods. The recent developments inspired this in deep learning algorithms, and the proposed method provided better performance than the current state-of-the-art models. Machine learning models such as: fully connected, recurrent, convolutional, and gradient boosted decision trees, are applied under a wide variety of testing conditions, and their advantage and disadvantage are discussed. Furthermore, a hybrid model is developed by combining the fully-connected and convolutional neural network, which shows the best performance among the different machine learning models. These improvements are represented by the model's test performance metric (i.e., F1 score) of 93.33% with an improvement of 2%-12% than the state-of-the-art model at various conditions. The experimental results show that fusion of classical neural networks and modern deep learning architecture is a suitable choice for interpreting gamma spectra data where real-time and remote detection is necessary.

키워드

과제정보

Thanks to detecting radiological threats in urban areas - challenge. https://www.topcoder.com/challenges/30085346 for sharing the necessary data for this study.

참고문헌

  1. D. Connor, P.G. Martin, T.B. Scott, Airborne radiation mapping: overview and application of current and future aerial systems, Int. J. Rem. Sens. 37 (24) (2016) 5953-5987. https://doi.org/10.1080/01431161.2016.1252474
  2. Yukihisa Sanada, Tatsuo Torii, Aerial radiation monitoring around the fukushima dai-ichi nuclear power plant using an unmanned helicopter, J. Environ. Radioact. 139 (2015) 294-299. https://doi.org/10.1016/j.jenvrad.2014.06.027
  3. Mucci Anthony, Drone Tours in Security Systems, US Patent App, April 28 2016, 14/516,651.
  4. Yoshinori Uekusa, Hiromi Nabeshi, Rika Nakamura, Tomoaki Tsutsumi, Akiko Hachisuka, Rieko Matsuda, Reiko Teshima, Surveillance of radioactive cesium in domestic foods on the Japanese market (fiscal years 2012 and 2013). Shokuhin eiseigaku zasshi, J. Food Hyg. Soc. Jpn. 56 (2) (2015) 49-56. https://doi.org/10.3358/shokueishi.56.49
  5. D.R. Rangaswamvi, J. Sannappa, E. Srinivasa, Estimation of radiological dose from radon, thoron and their progeny levels in the dwellings of shivamogga district, Karnataka, India, in: Proceedings of the Thirty-Third IARP International Conference on Developments towards Improvement of Radiological Surveillance at Nuclear Facilities and Environment: Book of Abstracts, 2018.
  6. Masahiro Hosoda, Kazumasa Inoue, Mitsuaki Oka, Yasutaka Omori, Kazuki Iwaoka, Shinji Tokonami, Environmental radiation monitoring and external dose estimation in aomori prefecture after the fukushima daiichi nuclear power plant accident, 保健物理 51 (1) (2016) 41-50.
  7. Miyuki Sasaki, Yukihisa Sanada, Estiner W. Katengeza, Akio Yamamoto, New method for visualizing the dose rate distribution around the fukushima daiichi nuclear power plant using artificial neural networks, Sci. Rep. 11 (1) (2021) 1-11. https://doi.org/10.1038/s41598-020-79139-8
  8. Huseyin Sahiner, Gamma Spectroscopy by Artificial Neural Network Coupled with MCNP, PhD thesis, 2017.
  9. Tom Burr, Michael Hamada, Radio-isotope identification algorithms for NaI γ spectra, Algorithms 2 (2009) 339-360. https://doi.org/10.3390/a2010339
  10. Miltiadis Alamaniotis, Heifetz Alexander, Apostolos C. Raptis, Lefteri H. Tsoukalas, Fuzzy-logic radioisotope identifier for gamma spectroscopy in source search, IEEE Trans. Nucl. Sci. 60 (4) (2013) 3014-3024, 8. https://doi.org/10.1109/TNS.2013.2265307
  11. M.T. Batdorf, W.K. Hensley, C.E. Seifert, L.J. Kirihara, L.E. Erikson, D.V. Jordan, Isotope identification in the GammaTracker handheld radioisotope identifier, in: 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), IEEE, 2009, pp. 868-872, 10.
  12. Dean J. Mitchell, Lee T. Harding, GADRAS Isotope ID User's Manual for Analysis of Gamma-Ray Measurements and API for Linux and Android. Technical Report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 2014, 5.
  13. R.C. Runkle, M.F. Tardiff, K.K. Anderson, D.K. Carlson, L.E. Smith, Analysis of spectroscopic radiation portal monitor data using principal components analysis, IEEE Trans. Nucl. Sci. 53 (3) (2006) 1418-1423, 6. https://doi.org/10.1109/TNS.2006.874883
  14. David Boardman, Mark Reinhard, Alison Flynn, Principal component analysis of gamma-ray spectra for radiation portal monitors, IEEE Trans. Nucl. Sci. 59 (1) (2012) 154-160. https://doi.org/10.1109/TNS.2011.2179313
  15. C.J. Sullivan, S.E. Garner, M. Lombardi, K.B. Butterfield, M.A. Smith-Nelson, Evaluation of key detector parameters for isotope identification, in: 2007 IEEE Nuclear Science Symposium Conference Record, IEEE, 2007, pp. 1181-1184.
  16. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Yoshua Bengio, Deep learning, 1, MIT press Cambridge, 2016.
  17. Yan T. Yang, Barak Fishbain, Dorit S. Hochbaum, Eric B. Norman, Erik Swanberg, The supervised normalized cut method for detecting, classifying, and identifying special nuclear materials, Inf. J. Comput. 26 (1) (2013) 45-58. https://doi.org/10.1287/ijoc.1120.0546
  18. S. Salaymeh, R. Jeffcoat, Radioisotope Identification of Shielded and Masked Snm Rdd Materials. Technical Report, Savannah River Site (SRS), 2010.
  19. T.R. Twomey, A.J. Caffrey, D.L. Chichester, Nondestructive Identification of Chemical Warfare Agents and Explosives by Neutron Generator-Driven Pgnaa. Technical Report, Idaho National Laboratory (INL), 2007.
  20. Tom Burr, Michael Hamada, Radio-isotope identification algorithms for nai γ spectra, Algorithms 2 (1) (2009) 339-360. https://doi.org/10.3390/a2010339
  21. Jianping He, Xiaobin Tang, Pin Gong, Peng Wang, Liangsheng Wen, Xi Huang, Zhenyang Han, Yan Wen, Le Gao, Rapid radionuclide identification algorithm based on the discrete cosine transform and BP neural network, Ann. Nucl. Energy 112 (1-8) (2018) 2.
  22. Changfan Zhang, Gen Hu, Fei Luo, Yongchun Xiang, Ge Ding, Chengsheng Chu, Jun Zeng, Ze Rende, Qingpei Xiang, Identification of SNM based on low-resolution gamma-ray characteristics and neural network, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 927 (155-160) (2019), 5.
  23. M. Kamuda, J. Stinnett, C.J. Sullivan, Automated isotope identification algorithm using artificial neural networks, IEEE Trans. Nucl. Sci. 64 (7) (2017) 1858-1864, 7. https://doi.org/10.1109/TNS.2017.2693152
  24. Elsayed K. Elmaghraby, M. Tohamy, M.N.H. Comsan, Determination of isotopes activity ratio using gamma ray spectroscopy based on neural network model, Appl. Radiat. Isot. 148 (19-26) (2019) 6.
  25. C. Bobin, O. Bichler, V. Lourenco, C. Thiam, M. Thevenin, Real-time radionu-clide identification in γ-emitter mixtures based on spiking neural network, Appl. Radiat. Isot. 109 (405-409) (2016), 3. https://doi.org/10.1016/j.apradiso.2015.12.029
  26. Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, Imagenet classification with deep convolutional neural networks, in: Advances in Neural Information Processing Systems, 2012, pp. 1097-1105.
  27. Olga Russakovsky, Deng Jia, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, Li Fei-Fei, ImageNet large scale visual recognition challenge, Int. J. Comput. Vis. 115 (3) (2015) 211-252, 12.
  28. Alex Graves, Abdel-rahman Mohamed, Geoffrey Hinton, Speech recognition with deep recurrent neural networks, in: Acoustics, Speech and Signal Processing (Icassp), 2013 Ieee International Conference on, IEEE, 2013, pp. 6645-6649.
  29. Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, Phil Blunsom, Teaching machines to read and comprehend, in: Advances in Neural Information Processing Systems, 2015, pp. 1693-1701.
  30. G. Daniel, F. Ceraudo, O. Limousin, D. Maier, A. Meuris, Automatic and real-time identification of radionuclides in gamma-ray spectra: a new method based on convolutional neural network trained with synthetic data set, IEEE Trans. Nucl. Sci. 67 (4) (2020) 644-653. https://doi.org/10.1109/tns.2020.2969703
  31. Mark Kamuda, Jacob Stinnett, C.J. Sullivan, Automated isotope identification algorithm using artificial neural networks, IEEE Trans. Nucl. Sci. 64 (7) (2017) 1858-1864. https://doi.org/10.1109/TNS.2017.2693152
  32. Shaikat Mahmood Galib, Applications of Machine Learning in Nuclear Imaging and Radiation Detection, 2019.
  33. Detecting radiological threats in urban areas - challenge, Accessed on 01/05/2021, https://www.topcoder.com/challenges/30085346.
  34. Scale - ornl, Accessed on 01/05/2021, https://www.ornl.gov/scale.
  35. Shaikat M. Galib, Hyoung K. Lee, Christopher L. Guy, Matthew J. Riblett, Geoffrey D. Hugo, A fast and scalable method for quality assurance of deformable image registration on lung ct scans using convolutional neural networks, Med. Phys. 47 (1) (2020) 99-109. https://doi.org/10.1002/mp.13890
  36. Wei Ouyang, Casper F. Winsnes, Hjelmare Martin, Anthony J. Cesnik, Lovisa Akesson, Hao Xu, Devin P. Sullivan, Shubin Dai, Jun Lan, Jinmo Park, et al., Analysis of the human protein atlas image classification competition, Nat. Methods 16 (12) (2019) 1254-1261. https://doi.org/10.1038/s41592-019-0658-6
  37. Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman, Phil Blunsom, Teaching Machines to Read and Comprehend, 2015, pp. 1-9.
  38. Ilya Sutskever, Oriol Vinyals, V Le Quoc, Sequence to sequence learning with neural networks, in: Advances in Neural Information Processing Systems, 2014, pp. 3104-3112.
  39. Alex Graves, Greg Wayne, Ivo Danihelka, Neural Turing Machines, 2014 arXiv preprint arXiv:1410.5401.
  40. Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Efficient Estimation of Word Representations in Vector Space, 2013 arXiv preprint arXiv:1301.3781.
  41. Alex Graves, Generating Sequences with Recurrent Neural Networks, 2013 arXiv preprint arXiv:1308.0850.
  42. S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (11 1997) 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
  43. P.M. Saz Parkinson, H. Xu, P.L.H. Yu, D. Salvetti, M. Marelli, A.D. Falcone, CLASSIFICATION and RANKING OFFERMILAT GAMMA-RAY sources from the 3fgl CATALOG using machine learning techniques, Astrophys. J. 820 (1) (mar 2016), 8. https://doi.org/10.3847/0004-637x/820/1/8
  44. Barzilov Alexander, Ivan Novikov, Material classification by analysis of prompt photon spectra induced by 14-mev neutrons, Physics Procedia 66 (2015) 396-402. The 23rd International Conference on the Application of Accelerators in Research and Industry - CAARI 2014. https://doi.org/10.1016/j.phpro.2015.05.049
  45. Diederik Kingma, Ba Jimmy, Adam: A Method for Stochastic Optimization, 2014 arXiv preprint arXiv:1412.6980.
  46. Sergey Ioffe, Christian Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015 arXiv preprint arXiv:1502.03167.
  47. Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (1) (2014) 1929-1958.
  48. Francois Chollet, et al., Keras. https://keras.io, 2015.
  49. Dehua Wang, Yang Zhang, Yi Zhao, Lightgbm: an effective mirna classification method in breast cancer patients, in: Proceedings of the 2017 International Conference on Computational Biology and Bioinformatics, ICCBB, New York, NY, USA, 2017, pp. 7-11, 2017. ACM.
  50. Juri Opitz, Sebastian Burst, Macro F1 and Macro F1, 2019 arXiv preprint arXiv: 1911.03347.