DOI QR코드

DOI QR Code

Adipose tissue-derived mesenchymal stem cells reduce endometriosis cellular proliferation through their anti-inflammatory effects

  • Meligy, Fatma Y. (Department of Histology and Cell Biology, Faculty of Medicine, Assiut University) ;
  • Elgamal, Dalia A. (Department of Histology and Cell Biology, Faculty of Medicine, Assiut University) ;
  • Abdelzaher, Lobna A. (Reproductive Science Research Center, Faculty of Medicine, Assiut University) ;
  • Khashbah, Maha Y. (Reproductive Science Research Center, Faculty of Medicine, Assiut University) ;
  • El-Mokhtar, Mohamed A. (Reproductive Science Research Center, Faculty of Medicine, Assiut University) ;
  • Sayed, Ayat A. (Reproductive Science Research Center, Faculty of Medicine, Assiut University) ;
  • Refaiy, Abeer M. (Reproductive Science Research Center, Faculty of Medicine, Assiut University) ;
  • Othman, Essam R. (Reproductive Science Research Center, Faculty of Medicine, Assiut University)
  • Received : 2020.12.31
  • Accepted : 2021.06.23
  • Published : 2021.12.31

Abstract

Objective: Endometriosis is a chronic debilitating inflammatory condition characterized by the presence of endometrial tissues outside the uterine cavity. Pelvic soreness and infertility are the usual association. Due to the poor effectiveness of the hormone therapy and the high incidence of recurrence following surgical excision, there is no single effective option for management of endometriosis. Mesenchymal stem cells (MSCs) are multipotent stromal cells studied for their broad immunoregulatory and anti-inflammatory properties; however, their efficiency in endometriosis cases is still a controversial issue. Our study aim was to evaluate whether adipose tissue-derived MSCs (AD-MSCs) could help with endometriosis through their studied anti-inflammatory role. Methods: Female Wistar rats weighting 180 to 250 g were randomly divided into two groups: group 1, endometriosis group; established by transplanting autologous uterine tissue into rats' peritoneal cavities and group 2, stem cell treated group; treated with AD-MSCs on the 5th day after induction of endometriosis. The proliferative activity of the endometriosis lesions was evaluated through Ki67 staining. Quantitative estimation of interferon γ, tumor necrosis factor-α, interleukin (IL)-6, IL-1β, IL-10, and transforming growth factor β expression, as well as immunohistochemical detection of CD68 positive macrophages, were used to assess the inflammatory status. Results: The size and proliferative activity of endometriosis lesions were significantly reduced in the stem cell treated group. Stem cells efficiently mitigated endometriosis associated chronic inflammatory reactions estimated through reduction of CD68 positive macrophages and the expression of the proinflammatory cytokines. Conclusion: Stem cell therapy can be considered a novel remedy in endometriosis possibly through its anti-inflammatory and antiproliferative properties.

Keywords

Acknowledgement

We are grateful to Prof. Dina Sabry (Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Badr University in Cairo, Badr City, Egypt for) for her kind assistance in the experiments of characterization of the stem cells. We acknowledge the members of Reproductive Science Research Center, Assiut University, Assiut, Egypt for their valuable support.

References

  1. Lafay Pillet MC, Huchon C, Santulli P, Borghese B, Chapron C, Fauconnier A. A clinical score can predict associated deep infiltrating endometriosis before surgery for an endometrioma. Hum Reprod 2014;29:1666-76. https://doi.org/10.1093/humrep/deu128
  2. Nisolle M, Donnez J. Peritoneal endometriosis, ovarian endometriosis, and adenomyotic nodules of the rectovaginal septum are three different entities. Fertil Steril 1997;68:585-96. https://doi.org/10.1016/S0015-0282(97)00191-X
  3. Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril 2012;98:511-9. https://doi.org/10.1016/j.fertnstert.2012.06.029
  4. Eskenazi B, Warner ML. Epidemiology of endometriosis. Obstet Gynecol Clin North Am 1997;24:235-58. https://doi.org/10.1016/s0889-8545(05)70302-8
  5. De Oliveira R, Musich DD, Ferreira MP, Vilarino FL, Barbosa CP. Epidemiological profile of infertile patients with endometriosis. Reprod Climaterio 2015;30:5-10. https://doi.org/10.1016/j.recli.2015.03.005
  6. Stratton P. The association of clinical symptoms with deep infiltrating endometriosis: the importance of the preoperative clinical assessment. Hum Reprod 2014;29:1627-8. https://doi.org/10.1093/humrep/deu131
  7. Simoens S, Dunselman G, Dirksen C, Hummelshoj L, Bokor A, Brandes I, et al. The burden of endometriosis: costs and quality of life of women with endometriosis and treated in referral centres. Hum Reprod 2012;27:1292-9. https://doi.org/10.1093/humrep/des073
  8. Ahn SH, Monsanto SP, Miller C, Singh SS, Thomas R, Tayade C. Pathophysiology and immune dysfunction in endometriosis. Biomed Res Int 2015;2015:795976.
  9. Giudice LC, Kao LC. Endometriosis. Lancet 2004;364:1789-99. https://doi.org/10.1016/S0140-6736(04)17403-5
  10. Lousse JC, Van Langendonckt A, Defrere S, Ramos RG, Colette S, Donnez J. Peritoneal endometriosis is an inflammatory disease. Front Biosci (Elite Ed) 2012;4:23-40.
  11. Tanbo T, Fedorcsak P. Endometriosis-associated infertility: aspects of pathophysiological mechanisms and treatment options. Acta Obstet Gynecol Scand 2017;96:659-67. https://doi.org/10.1111/aogs.13082
  12. Hever A, Roth RB, Hevezi P, Marin ME, Acosta JA, Acosta H, et al. Human endometriosis is associated with plasma cells and overexpression of B lymphocyte stimulator. Proc Natl Acad Sci U S A 2007;104:12451-6. https://doi.org/10.1073/pnas.0703451104
  13. Kyama CM, Debrock S, Mwenda JM, D'Hooghe TM. Potential involvement of the immune system in the development of endometriosis. Reprod Biol Endocrinol 2003;1:123. https://doi.org/10.1186/1477-7827-1-123
  14. Oosterlynck DJ, Cornillie FJ, Waer M, Koninckx PR. Immunohistochemical characterization of leucocyte subpopulations in endometriotic lesions. Arch Gynecol Obstet 1993;253:197-206. https://doi.org/10.1007/BF02766646
  15. Taylor RN, Ryan IP, Moore ES, Hornung D, Shifren JL, Tseng JF. Angiogenesis and macrophage activation in endometriosis. Ann N Y Acad Sci 1997;828:194-207. https://doi.org/10.1111/j.1749-6632.1997.tb48540.x
  16. Taylor RN, Lebovic DI, Mueller MD. Angiogenic factors in endometriosis. Ann N Y Acad Sci 2002;955:89-100. https://doi.org/10.1111/j.1749-6632.2002.tb02769.x
  17. Vinatier D, Dufour P, Oosterlynck D. Immunological aspects of endometriosis. Hum Reprod Update 1996;2:371-84. https://doi.org/10.1093/humupd/2.5.371
  18. Wu MY, Ho HN. The role of cytokines in endometriosis. Am J Reprod Immunol 2003;49:285-96. https://doi.org/10.1034/j.1600-0897.2003.01207.x
  19. Bacci M, Capobianco A, Monno A, Cottone L, Di Puppo F, Camisa B, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol 2009;175:547-56. https://doi.org/10.2353/ajpath.2009.081011
  20. Donnez J, Smoes P, Gillerot S, Casanas-Roux F, Nisolle M. Vascular endothelial growth factor (VEGF) in endometriosis. Hum Reprod 1998;13:1686-90. https://doi.org/10.1093/humrep/13.6.1686
  21. Schor E, de Freitas V, Simoes JM, Baracat EC. Endometriose: modelo experimental em ratas. Rev Bras Ginecol Obstet 1999;21:281-84. https://doi.org/10.1590/S0100-72031999000500006
  22. Greaves E, Cousins FL, Murray A, Esnal-Zufiaurre A, Fassbender A, Horne AW, et al. A novel mouse model of endometriosis mimics human phenotype and reveals insights into the inflammatory contribution of shed endometrium. Am J Pathol 2014;184:1930-9. https://doi.org/10.1016/j.ajpath.2014.03.011
  23. Garai J, Molnar V, Varga T, Koppan M, Torok A, Bodis J. Endometriosis: harmful survival of an ectopic tissue. Front Biosci 2006;11:595-619. https://doi.org/10.2741/1821
  24. Elgamal DA, Othman ER, Ahmed SF. Ultrastructural features of eutopic endometrium in a rat model of endometriosis. J Microsc Ultrastruct 2016;4:20-7. https://doi.org/10.1016/j.jmau.2015.10.002
  25. Dhesi AS, Morelli SS. Endometriosis: a role for stem cells. Womens Health (Lond) 2015;11:35-49. https://doi.org/10.2217/WHE.14.57
  26. Mundra V, Gerling IC, Mahato RI. Mesenchymal stem cell-based therapy. Mol Pharm 2013;10:77-89. https://doi.org/10.1021/mp3005148
  27. Doorn J, Moll G, Le Blanc K, van Blitterswijk C, de Boer J. Therapeutic applications of mesenchymal stromal cells: paracrine effects and potential improvements. Tissue Eng Part B Rev 2012;18:101-15. https://doi.org/10.1089/ten.TEB.2011.0488
  28. Silva JC, Silva AC, Reis FJ, Garcia SB, Sa MF, Nogueira AA. Development of an experimental model of endometriosis in rabbits. Int Congr Ser 2004;1271:248-51. https://doi.org/10.1016/j.ics.2004.05.092
  29. Vernon MW, Wilson EA. Studies on the surgical induction of endometriosis in the rat. Fertil Steril 1985;44:684-94. https://doi.org/10.1016/s0015-0282(16)48988-0
  30. Berkley KJ, Cason A, Jacobs H, Bradshaw H, Wood E. Vaginal hyperalgesia in a rat model of endometriosis. Neurosci Lett 2001;306:185-8. https://doi.org/10.1016/S0304-3940(01)01906-1
  31. Tirado-Gonzalez I, Barrientos G, Tariverdian N, Arck PC, Garcia MG, Klapp BF, et al. Endometriosis research: animal models for the study of a complex disease. J Reprod Immunol 2010;86:141-7. https://doi.org/10.1016/j.jri.2010.05.001
  32. Mailey B, Hosseini A, Baker J, Young A, Alfonso Z, Hicok K, et al. Adipose-derived stem cells: methods for isolation and applications for clinical use. Methods Mol Biol 2014;1210:161-81. https://doi.org/10.1007/978-1-4939-1435-7_13
  33. Meligy FY, Shigemura K, Behnsawy HM, Fujisawa M, Kawabata M, Shirakawa T. The efficiency of in vitro isolation and myogenic differentiation of MSCs derived from adipose connective tissue, bone marrow, and skeletal muscle tissue. In Vitro Cell Dev Biol Anim 2012;48:203-15. https://doi.org/10.1007/s11626-012-9488-x
  34. Bancroft JD, Gamble M. Theory and practice of histological techniques. 6th ed. Edinburgh: Churchill Livingstone; 2008.
  35. El-Mokhtar MA, Bauer A, Madela J, Voigt S. Cellular distribution of CD200 receptor in rats and its interaction with cytomegalovirus e127 protein. Med Microbiol Immunol 2018;207:307-18. https://doi.org/10.1007/s00430-018-0552-3
  36. OuYang Z, Hirota Y, Osuga Y, Hamasaki K, Hasegawa A, Tajima T, et al. Interleukin-4 stimulates proliferation of endometriotic stromal cells. Am J Pathol 2008;173:463-9. https://doi.org/10.2353/ajpath.2008.071044
  37. Guney M, Oral B, Karahan N, Mungan T. Regression of endometrial explants in a rat model of endometriosis treated with melatonin. Fertil Steril 2008;89:934-42. https://doi.org/10.1016/j.fertnstert.2007.04.023
  38. Uchiide I, Ihara T, Sugamata M. Pathological evaluation of the rat endometriosis model. Fertil Steril 2002;78:782-6. https://doi.org/10.1016/S0015-0282(02)03327-7
  39. Figueira PG, Abrao MS, Krikun G, Taylor HS. Stem cells in endometrium and their role in the pathogenesis of endometriosis. Ann N Y Acad Sci 2011;1221:10-7. https://doi.org/10.1111/j.1749-6632.2011.05969.x
  40. Olive DL, Weinberg JB, Haney AF. Peritoneal macrophages and infertility: the association between cell number and pelvic pathology. Fertil Steril 1985;44:772-7. https://doi.org/10.1016/s0015-0282(16)49036-9
  41. Kats R, Collette T, Metz CN, Akoum A. Marked elevation of macrophage migration inhibitory factor in the peritoneal fluid of women with endometriosis. Fertil Steril 2002;78:69-76. https://doi.org/10.1016/S0015-0282(02)03189-8
  42. Eisermann J, Gast MJ, Pineda J, Odem RR, Collins JL. Tumor necrosis factor in peritoneal fluid of women undergoing laparoscopic surgery. Fertil Steril 1988;50:573-9. https://doi.org/10.1016/s0015-0282(16)60185-1
  43. Harada T, Yoshioka H, Yoshida S, Iwabe T, Onohara Y, Tanikawa M, et al. Increased interleukin-6 levels in peritoneal fluid of infertile patients with active endometriosis. Am J Obstet Gynecol 1997;176:593-7. https://doi.org/10.1016/S0002-9378(97)70553-2
  44. Akoum A, Metz CN, Al-Akoum M, Kats R. Macrophage migration inhibitory factor expression in the intrauterine endometrium of women with endometriosis varies with disease stage, infertility status, and pelvic pain. Fertil Steril 2006;85:1379-85. https://doi.org/10.1016/j.fertnstert.2005.10.073
  45. Osteen KG, Bruner-Tran KL, Ong D, Eisenberg E. Paracrine mediators of endometrial matrix metalloproteinase expression: potential targets for progestin-based treatment of endometriosis. Ann N Y Acad Sci 2002;955:139-46. https://doi.org/10.1111/j.1749-6632.2002.tb02774.x
  46. Sillem M, Prifti S, Koch A, Neher M, Jauckus J, Runnebaum B. Regulation of matrix metalloproteinases and their inhibitors in uterine endometrial cells of patients with and without endometriosis. Eur J Obstet Gynecol Reprod Biol 2001;95:167-74. https://doi.org/10.1016/S0301-2115(00)00415-2
  47. Harada T, Enatsu A, Mitsunari M, Nagano Y, Ito M, Tsudo T, et al. Role of cytokines in progression of endometriosis. Gynecol Obstet Invest 1999;47 Suppl 1:34-9.
  48. Barcz E, Milewski L, Dziunycz P, Kaminski P, Ploski R, Malejczyk J. Peritoneal cytokines and adhesion formation in endometriosis: an inverse association with vascular endothelial growth factor concentration. Fertil Steril 2012;97:1380-6.e1. https://doi.org/10.1016/j.fertnstert.2012.03.057
  49. Cheong YC, Shelton JB, Laird SM, Richmond M, Kudesia G, Li TC, et al. IL-1, IL-6 and TNF-alpha concentrations in the peritoneal fluid of women with pelvic adhesions. Hum Reprod 2002;17:69-75.
  50. Vigano P, Candiani M, Monno A, Giacomini E, Vercellini P, Somigliana E. Time to redefine endometriosis including its pro-fibrotic nature. Hum Reprod 2018;33:347-52. https://doi.org/10.1093/humrep/dex354
  51. Asante A, Taylor RN. Endometriosis: the role of neuroangiogenesis. Annu Rev Physiol 2011;73:163-82. https://doi.org/10.1146/annurev-physiol-012110-142158
  52. Abomaray F, Gidlof S, Bezubik B, Engman M, Gotherstrom C. Mesenchymal stromal cells support endometriotic stromal cells in vitro. Stem Cells Int 2018;2018:7318513. https://doi.org/10.1155/2018/7318513
  53. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells: the International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-7. https://doi.org/10.1080/14653240600855905
  54. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant 2016;25:829-48. https://doi.org/10.3727/096368915X689622
  55. Chen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 2010;10:826-37. https://doi.org/10.1038/nri2873
  56. Eigenbrod T, Park JH, Harder J, Iwakura Y, Nunez G. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J Immunol 2008;181:8194-8. https://doi.org/10.4049/jimmunol.181.12.8194
  57. Rock KL, Latz E, Ontiveros F, Kono H. The sterile inflammatory response. Annu Rev Immunol 2010;28:321-42. https://doi.org/10.1146/annurev-immunol-030409-101311
  58. Soehnlein O, Lindbom L. Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 2010;10:427-39. https://doi.org/10.1038/nri2779
  59. Dorronsoro A, Fernandez-Rueda J, Fechter K, Ferrin I, Salcedo JM, Jakobsson E, et al. Human mesenchymal stromal cell-mediated immunoregulation: mechanisms of action and clinical applications. Bone Marrow Res 2013;2013:203643. https://doi.org/10.1155/2013/203643
  60. Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther 2012;20:14-20. https://doi.org/10.1038/mt.2011.211
  61. Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 2012;12:383-96. https://doi.org/10.1038/nri3209
  62. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 2013;13:392-402. https://doi.org/10.1016/j.stem.2013.09.006
  63. Melief SM, Schrama E, Brugman MH, Tiemessen MM, Hoogduijn MJ, Fibbe WE, et al. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. Stem Cells 2013;31:1980-91. https://doi.org/10.1002/stem.1432
  64. Oh JY, Roddy GW, Choi H, Lee RH, Ylostalo JH, Rosa RH Jr, et al. Anti-inflammatory protein TSG-6 reduces inflammatory damage to the cornea following chemical and mechanical injury. Proc Natl Acad Sci U S A 2010;107:16875-80. https://doi.org/10.1073/pnas.1012451107
  65. Wang Y, Huang L, Abdelrahim M, Cai Q, Truong A, Bick R, et al. Stanniocalcin-1 suppresses superoxide generation in macrophages through induction of mitochondrial UCP2. J Leukoc Biol 2009;86:981-8. https://doi.org/10.1189/jlb.0708454
  66. Domnina A, Novikova P, Obidina J, Fridlyanskaya I, Alekseenko L, Kozhukharova I, et al. Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium. Stem Cell Res Ther 2018;9:50. https://doi.org/10.1186/s13287-018-0801-9
  67. Waiyaput W, Pumipichet S, Weerakiet S, Rattanasiri S, Sophonsritsuk A. Effect of simvastatin on monocyte chemoattractant protein-1 expression in endometriosis patients: a randomized controlled trial. BMC Womens Health 2017;17:89. https://doi.org/10.1186/s12905-017-0446-3
  68. Holness CL, Simmons DL. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 1993;81:1607-13. https://doi.org/10.1182/blood.v81.6.1607.1607
  69. Istrate-Ofiteru AM, Pirici D, Niculescu M, Berceanu C, Berceanu S, Voicu NL, et al. Clinical, morphological and immunohistochemical survey in different types of endometriosis. Rom J Morphol Embryol 2018;59:1133-53.
  70. Scheerer C, Bauer P, Chiantera V, Sehouli J, Kaufmann A, Mechsner S. Characterization of endometriosis-associated immune cell infiltrates (EMaICI). Arch Gynecol Obstet 2016;294:657-64. https://doi.org/10.1007/s00404-016-4142-6
  71. Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000;182:311-22. https://doi.org/10.1002/(SICI)1097-4652(200003)182:3<311::AID-JCP1>3.0.CO;2-9
  72. Bratila E, Bratila CP, Comandasu DE, Bausic V, Vladescu CT, Mehedintu C, et al. The assessment of immunohistochemical profile of endometriosis implants, a practical method to appreciate the aggressiveness and recurrence risk of endometriosis. Rom J Morphol Embryol 2015;56:1301-7.
  73. Goteri G, Altobelli E, Tossetta G, Zizzi A, Avellini C, Licini C, et al. High temperature requirement A1, transforming growth factor beta1, phosphoSmad2 and Ki67 in eutopic and ectopic endometrium of women with endometriosis. Eur J Histochem 2015;59:2570.