DOI QR코드

DOI QR Code

Current Status of Titanium Recycling Technology

타이타늄의 리사이클링 기술 현황

  • Sohn, Ho-Sang (School of Materials Science and Engineering, Kyungpook National University)
  • Received : 2020.11.27
  • Accepted : 2021.01.27
  • Published : 2021.02.28

Abstract

Titanium is the fourth most abundant structural metal, after aluminum, iron, and magnesium. However, it is classified as a 'rare metals', because it is difficult to smelt. In particular, the primary titanium production process is highly energy-intensive. Recycling titanium scraps to produce ingots can reduce energy consumption and CO2 emissions by approximately 95 %. However, the amount of metal recycled from scrap remains limited of the difficulty in removing impurities such as iron and oxygen from the scrap. Generally, high-grade titanium and its alloy scraps are recycled by dilution with a virgin titanium sponge during the remelting process. Low-grade titanium scrap is recycled to ferrotitanium (cascade recycling). This paper provides an overview of titanium production and recycling processes.

타이타늄은 구조용 금속 중 알루미늄, 철, 마그네슘에 이어서 네 번째로 풍부한 금속이지만, 금속으로의 제련이 어려워 희소금속으로 분류되고 있다. 특히 타이타늄의 제련공정은 에너지 다소비형 공정이다. 타이타늄 스크랩으로 잉곳을 제조하면 에너지 소비량과 CO2 발생량을 약 95 %까지 절감할 수 있다. 그러나 스크랩 중의 철분과 산소 등의 불순물을 제거하기 어려워 리사이클링 되는 양은 한정되어 있다. 일반적으로 고품위 타이타늄 스크랩은 순타이타늄 스펀지의 재용해 공정에 투입하여 희석하고, 저품위 스크랩은 페로타이타늄 제조용 원료로 사용되고 있다. 본 논문에서는 이러한 타이타늄의 리사이클링 기술을 이해하기 위해 타아타늄의 제련기술과 리사이클링 기술에 대하여 고찰하였다.

Keywords

References

  1. Sohn, Hosang, 2020 : Recycling of Common Metals, p. 17, KNU Press, Daegu, Korea.
  2. Sohn, Ho-Sang and Jung, Jae-Young, 2016 : Current Status of Titanium Smelting Technology, J. of Korean Inst. of Resources Recycling, 25(4), pp.68-79. https://doi.org/10.7844/kirr.2016.25.4.68
  3. Hunter, M. A., 1910 : METALLIC TITANIUM, J. Am. Chem. Soc., 32(3), pp.330-336. https://doi.org/10.1021/ja01921a006
  4. Kroll, W., 1940 : Method for manufacturing titanium and alloys thereof, US Patent No. 2,205,854.
  5. Kroll, W., 1940 : THE PRODU CTION OF DU CTILE TITANIUM, Trans. Electrochem. Soc., 78, pp.35-47. https://doi.org/10.1149/1.3071290
  6. Kroll, W., 1955 : How Commercial Titanium and Zirconium were Born, J. of The Franklin Institute, 260(3), pp.169-192. https://doi.org/10.1016/0016-0032(55)90727-4
  7. Sohn, Ho-Sang, 2020 : Production Technology of Titanium by Kroll Process, J. of Korean Inst. of Resources Recycling, 29(4), pp.3-14. https://doi.org/10.7844/KIRR.2020.29.4.3
  8. Hyodo, T. and Mochizuki, N., 2007 : Titanium Sponge Production at OSAKA Titanium Technologies Co., Ltd., J. MMIJ, 123(13), pp.698-703. https://doi.org/10.2473/journalofmmij.123.698
  9. Duflos, R., 2016 : Titanium Aerospace demand & Integrated Supply Chain, in: Proceedings of Titanium USA 2016, Sep. 25-28, 2016, Scottsdale, AZ, USA, ITA.
  10. Nicholas, D. Corby III, 2020 : Titanium Scrap Trends, Procd. of TITANIUM Virtual 2020, 13-14 Oct. 2020.
  11. https://www.usgs.gov/centers/nmic/titanium-statistics-and-information
  12. Donachie, M.J., 2000 : Titanium: A Technical Guide, 2nd Ed., Ch. 2 Introduction to Selection of Titanium Alloys p. 8, ASM International.
  13. Adam Coggins, 2019 : Titanium Metal-global supply and demand trends overview, Procd. of TITANIUM USA 2019, Mobile, AL, 25 Sept. 2019.
  14. Sohn, Ho-Sang and Jung, Jae-Young, 2016 : Current Status of Ilmenite Beneficiation Technology for Production of TiO2, J. of Korean Inst. of Resources Recycling, 25(5), pp.64-74. https://doi.org/10.7844/kirr.2016.25.5.64
  15. Marui, Y., Kinoshita, T., and Takahashi, K., 2002 : Development of a titanium material by utilizing off-grade titanium sponge, Honda R&D Technical Review, 14, pp. 149-156.
  16. Matt Schmink, 2019 : Ferrotitanium, Procd. of TITANIUM USA 2019, 22-25 Sept. 2019, Mobile, AL, ITA.
  17. Noda, Toshio, 1991 : Review on Development of Titanium Sponge Production Technology, Bulletin of the Japan Institute of Metals, 30(2), pp.150-160. https://doi.org/10.2320/materia1962.30.150
  18. Subramanyam, R. B., 1993 : Some recent innovations in the Kroll process of titanium sponge production, Bull. Mater. Sci., 16(6), pp.433-451. https://doi.org/10.1007/BF02757646
  19. Sohn, Hosang, 2019 : Engineering of Resources Recycling, p. 344, KNU Press, Daegu, Korea.
  20. Duflos, R., 2016 : Titanium aerospace demand & integrated supply chain, Procd. of Titanium USA 2016, ITA, Sep. 25-28, 2016, Scottsdale, AZ, USA.
  21. Faitelson, Jerry, 2015 : Recycling Titanium, Procd. of Titanium USA 2015, ITA, Oct. 4-7, 2015, Orlando, FL, USA.
  22. Fukuyamam, T., Koizumi, M., Hanki, M., et al., 1993 : Production of Titanium Sponge and Ingot at Toho Titanium Co., Ltd., Shigen-to-Sozai, 109(12), pp.1157-1163. https://doi.org/10.2473/shigentosozai.109.1157
  23. Rotmann, B., Lochbichler, C., and Friedrich, B., 2011 : Challenges in Titanium Recycling - Do We Need a New Specification for Secondary Alloys?, Proc. of EMC 2011, Vol. 4, pp.1465-1480, June 26-28, Dusseldorf, Germany.
  24. Kusamichi, T. and Mitsui, N., 1999 : Progress in Titanium Melting Technology, Research and Development KOBE STEEL ENGINEERING REPORTS, 49(3), pp.13-14.
  25. Ninagawa, S., Nagao, M., Kusamichi, T., et al., 1999 : Bottom Pouring Technology in Cold Crucible Induction Melting, Research and Development KOBE STEEL ENGINEERING REPORTS, 49(3), pp.15-16.
  26. Takeda, O., Ouchi, T., and Okabe, T. H., 2020 : Recent Progress in Titanium Extraction and Recycling, Metall. Mater. Trans. B, 51B, pp.1315-1328. https://doi.org/10.1007/s11663-020-01898-6
  27. Okabe, T. H., Zheng, C. and Taninouchi, Y., 2018 : Thermodynamic Considerations of Direct Oxygen Removal from Titanium by Utilizing the Deoxidation Capability of Rare Earth Metals, Metall. Mater. Trans. B, 49B, pp.1056-1066.
  28. Yoon, Moo-Won and Sohn, Ho-Sang, 2013 : Deoxidation of Titanium Scrap by Calciothermic Reduction, J. of Korean Inst. of Resources Recycling, 22(6), pp.41-47. https://doi.org/10.7844/kirr.2013.22.6.41
  29. Oishi, T., Okabe, T. H. and Katsutoshi Ono, K., 1993 : Technology of deoxidation of titanium, Kekinzoku, 43(7), pp.392-400.
  30. Iizuka, A., Ouchi, T. and Okabe, T. H., 2020 : Ultimate Deoxidation Method of Titanium-New Technology Using Rare Earth Oxyhalides, Titanium Japan, 68(3), pp.220-225.
  31. Xu, L., Zhang, Y., Fang, Z., et al., 2018 : A novel deoxygenation process for Ti powder with Mg in H2, Ti USA 2018 Las Vegas.