References
- K. W. Lange, 1988 : Thermodynamic and kinetic aspects of secondary steelmaking processes, Int. Mater. Reviews, 33(1), pp.53-89. https://doi.org/10.1179/imr.1988.33.1.53
- J. H. Park and Y. Kang, 2017 : Inclusions in Stainless Steels - A Review, Steel Res. Int., 88, 1700130. https://doi.org/10.1002/srin.201700130
- J. H. Park and H. Todoroki, 2010 : Control of MgO·Al2O3 Spinel Inclusions in Stainless Steels, ISIJ Int., 50(10), pp.1333-1346. https://doi.org/10.2355/isijinternational.50.1333
- M. Hino and K. Ito, 2010 : Thermodynamic data for steel-making, pp.10, Tohoku University Press, Sendai, Japan.
- D. G. C. Robertson, B. Deo and S. Ohguchi, 1984 : Multi-component Mixed-Transport-Control Theory for Kinetics of Coupled Slag/Metal and Slag/Metal/Gas Reactions: Application to desulphurization of molten iron, Ironmaking and Steelmaking, 11(1), pp.44-55.
- S. Ohguchi, D. G. C. Robertson, B. Deo, et al., 1984 : Simultaneous dephosphorization and desulphurization of molten pig iron, Ironmaking and Steelmaking, 11(4), pp.202-213.
- K. J. Graham and G. A. Iron, 2008 : Coupled Kinetic Phenomena in Ladle Metallurgy, In Proc. of the 3rd international conference on process development in iron and steelmaking, pp.385-396, SCANMET III, MEFOS, Lulea, Sweden.
- K. J. Graham, 2008 : Integrated Ladle Metallurgy Control, Thesis, McMaster University, Canada.
- K. J. Graham and G. A. Iron, 2009 : Toward Integrated Ladle Metallurgy Control, Iron and Steel Tech., 6(1), pp. 164-173.
- A. Harada, N. Maruoka, H. Shibata, et al., 2013 : A Kinetic M odel to Predict the Compositions of M etal, Slag and Inclusions during Ladle Refining: Part 1. Basic Concept and Application, ISIJ Int., 53(12), pp.2110-2117. https://doi.org/10.2355/isijinternational.53.2110
- A. Harada, N. Maruoka, H. Shibata, et al., 2013 : A Kinetic M odel to Predict the Compositions of M etal, Slag and Inclusions during Ladle Refining: Part 2. Condition to Control the Inclusion Composition, ISIJ Int., 53(12), pp. 2118-2125. https://doi.org/10.2355/isijinternational.53.2118
- S. -J. Kim, A. Harada and S. Kitamura, 2011 : Condition to suppress spinel formation in ladle treatment predicted by the kinetics simulation model, Proc. of AISTech 2015, 3261, Cleveland, Ohio, USA.
- J. -I. Kim, S. -J. Kim and S. Kitamura, 2018 : Effect of inclusions behaviors on the formation of Al2O3 and Spinel inclusions in ladle treatment by simulation model, Proc. of ICS 2018, CD-ROM, Venice, Italy.
- J. -I. Kim and S. -J. Kim, 2020 : Evolution of Mg-Al-based Inclusions with Changes in Mg Content during Ladle Treatment Based on a Coupled Reaction Model, ISIJ Int., 60(4), pp.691-698. https://doi.org/10.2355/isijinternational.isijint-2019-488
- J. -I. Kim and S. -J. Kim, 2020 : Influence of Cr Content in Steel on the Behavior of MgO·Al2O3 Spinel Inclusions During Ladle Treatment by Using Kinetic Reaction Model, Trans. Indian Inst. Met., Online-publised, Springer Link.
- M. -A. van Ende, Y. -M. Kim, M. -K. Cho, et al., 2011 : A Kinetic Model for the Ruhrstahl Heraeus (RH) Degassing Process, Metall. Mater. Trans. B, 42(3), pp.477-489. https://doi.org/10.1007/s11663-011-9495-4
- M. -A. van Ende and I. -H. Jung, 2014 : Development of a Thermodynamic Database for Mold Flux and Application to the Continuous Casting Process, ISIJ Int., 54(3), pp. 489-495. https://doi.org/10.2355/isijinternational.54.489
- M. -A. van Ende and I. -H. Jung, 2016 : A Kinetic Ladle Furnace Process Simulation Model: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing, Metall. Mater. Trans. B, 48(1), pp.28-36. https://doi.org/10.1007/s11663-016-0698-6
- J. H. Shin, Y. Chung and J. H. Park, 2017 : Refractory-Slag-Metal-Inclusion Multiphase Reactions Modeling Using Computational Thermodynamics: Kinetic Model for Prediction of Inclusion Evolution in Molten Steel, 48(1), pp. 46-59.
- J. H. Shin and J. H. Park, 2017 : Modification of Inclusions in Molten Steel by Mg-Ca Transfer from Top Slag: Experimental Confirmation of the 'Refractory-Slag-Metal-Inclusion (ReSMI)' Multiphase Reaction Model, Metall. Mater. Trans. B, 48(6), pp.2820-2825. https://doi.org/10.1007/s11663-017-1080-z
- J. Peter, K. D. Peaslee and D. G. C. Robertson, 2005 : Experimental Study of Kinetic Processes during the Steel Treatment at two LMFs, Proc. of AISTech 2005, pp.959-973.
- Q. Shu, O. Volkova, S. Lachmann, et al., 2011 : Modification of Inclusion Composition in Steel During Secondary Metallurgical Ladle Treatment - A Comprehensive Process Simulation Model, Proc of AISTech 2011, pp.537-547, Indianapolis, Ind., USA.
- T. Dubberstein, O. Volkova, S. Lachmann, et al., 2012 : Investigation on steel cleanliness of a heat resistant steel grade characterization of non-metallic inclusion in ladle treatment, Proc. of International Conference on Clean Steel 8.
- D. Kumar, K. C. Ahlborg and P. C. Pistorius, 2017 : Application of Kinetic Model for Industrial Scale Ladle Refining Process, Proc. of AISTech 2017, pp.2693-2706.
- G. Okuyama, K. Yamaguchi, S. Takeuchi, et al., 2000 : Effect of Slag Composition on the Kinetics of Formation of Al2O3-MgO Inclusions in Aluminum Killed Ferritic Stainless Steel, ISIJ Int., 40(2), pp.121-128. https://doi.org/10.2355/isijinternational.40.121
- Y. Tabatabaei, K. S. Coley, G. A. Irons, et al., 2018 : A Multilayer Model for Alumina Inclusion Transformation by Calcium in the Ladle Furnace, Metall. Trans. B, 49(1), pp.375-387. https://doi.org/10.1007/s11663-017-1120-8
- D. Mazumdar and R. I. L. Guthrie, 1995 : The Physical and Mathematical Modelling of Gas Stirred Ladle Systems, ISIJ Int., 35(1), pp.1-20. https://doi.org/10.2355/isijinternational.35.1
- M. Soder, P. Jonsson and L. Jonsson, 2004 : Inclusion Growth and Removal in Gas-Stirred Ladles, Steel Research Int., 75(2), pp.128-138. https://doi.org/10.1002/srin.200405938
- J. Aoki, L. Zhang and B. G. Thomas, 2005 : Modeling of Inclusion Removal in Ladle Refining, Proc. of The 3rd International Cong. On the Science and Technology of steelmaking, Warrandale, PA, Australia.
- W. Lou and M. Zhu, 2013 : Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles, Metall. Mater. Trans. B, 44(B), pp.762-782. https://doi.org/10.1007/s11663-013-9802-3
- Q. Cao and L. Nastac, 2018 : Numerical modelling of the transport and removal of inclusions in an industrial gas-stirred ladle, Ironmaking and Steelmaking, 45(10), pp.984-991. https://doi.org/10.1080/03019233.2018.1426697
- X. Wang, 2016 : Ladle furnace temperature prediction model based on large-scale data with random forest, IEEE/CAA Journal of Automatica Sinica, 4(4), pp.770-774. https://doi.org/10.1109/JAS.2016.7510247
- S. -J. Kim, 2019 : Past and present of secondary refining model for inclusion composition control, Kinzoku, 89(9), pp.53-59.
- FactSage 7.1, Thermfact/CRCR and GTT-Technologies, 1976-2020.
- H. X. Tian, Z. Z. Mao, 2009 : An ensemble ELM based on modified AdaBoost. RT algorithm for predicting the temperature of molten steel in ladle furnace, IEEE Trans. on Automation Science and Engineering, 7(1), pp.73-80. https://doi.org/10.1109/TASE.2008.2005640