DOI QR코드

DOI QR Code

A Review of Kinetic Model for Production of Highgrade Steel : Part. 2. Complex Reaction Model and Single Reaction Model

고급강 제조 반응 모델의 검토 : Part. 2. 종합 모델 및 단일 반응 모델

  • Kim, Jeong-In (Dep. of Advanced Materials Engineering, Chosun University) ;
  • Kim, Sun-Joong (Dep. of Materials Engineering & Science, Chosun University)
  • 김정인 (조선대학교 첨단소재공학과) ;
  • 김선중 (조선대학교 재료공학과)
  • Received : 2020.08.19
  • Accepted : 2020.12.23
  • Published : 2021.02.28

Abstract

As a demand of high-end steel raises, the importance of secondary refinement process also increases. However, the content of each component in molten steel, slag and inclusions change with the time, meaning the secondary refinement process is not an equilibrium state. Furthermore, many reactions occur between molten steel, slag, inclusion, refractory and alloying element during secondary refinement process. In order to consider the above complex reactions with non-equilibrium state, a few researchers developed kinetic models in secondary refinement process based on the experimental numerical equations. It is important to analyze and review to the previously reported models to develop a precise model. Therefore, in present study, the complex reaction models based on kinetic in secondary refinement process were analyzed, reviewed, and introduced. Moreover, the single reaction models also introduced which would be applied to the complex reaction models.

고품질 철강의 수요가 증가함에 따라 2차 정련 공정의 중요성이 높아지고 있다. 하지만 공정 시간에 따라 변화하는 용강, 슬래그 및 비금속 개재물의 조성은 정련 공정이 평형 상태가 아님을 의미하며, 정련 공정에서는 용강, 슬래그, 비금속 개재물, 내화물 및 합금 원소 간의 동시 다발적 반응이 일어난다. 다양한 상들의 비평형 상태에서 복잡한 반응을 고려하기 위해, 이전 연구자들은 실험을 통해 도출된 반응 속도 수식들을 기반으로 kinetic 기반의 고급강 제조 정련 시뮬레이션 모델을 발표하였다. 정밀한 시뮬레이션 모델의 개발을 위해 보고된 2차 정련 모델들의 분석 및 검토가 필요하다. 본 연구에서는 국내외로 발표된 정련 공정 관련 종합 모델들 및 단일 반응 모델들에 대하여 검토하고 소개하였다.

Keywords

References

  1. K. W. Lange, 1988 : Thermodynamic and kinetic aspects of secondary steelmaking processes, Int. Mater. Reviews, 33(1), pp.53-89. https://doi.org/10.1179/imr.1988.33.1.53
  2. J. H. Park and Y. Kang, 2017 : Inclusions in Stainless Steels - A Review, Steel Res. Int., 88, 1700130. https://doi.org/10.1002/srin.201700130
  3. J. H. Park and H. Todoroki, 2010 : Control of MgO·Al2O3 Spinel Inclusions in Stainless Steels, ISIJ Int., 50(10), pp.1333-1346. https://doi.org/10.2355/isijinternational.50.1333
  4. M. Hino and K. Ito, 2010 : Thermodynamic data for steel-making, pp.10, Tohoku University Press, Sendai, Japan.
  5. D. G. C. Robertson, B. Deo and S. Ohguchi, 1984 : Multi-component Mixed-Transport-Control Theory for Kinetics of Coupled Slag/Metal and Slag/Metal/Gas Reactions: Application to desulphurization of molten iron, Ironmaking and Steelmaking, 11(1), pp.44-55.
  6. S. Ohguchi, D. G. C. Robertson, B. Deo, et al., 1984 : Simultaneous dephosphorization and desulphurization of molten pig iron, Ironmaking and Steelmaking, 11(4), pp.202-213.
  7. K. J. Graham and G. A. Iron, 2008 : Coupled Kinetic Phenomena in Ladle Metallurgy, In Proc. of the 3rd international conference on process development in iron and steelmaking, pp.385-396, SCANMET III, MEFOS, Lulea, Sweden.
  8. K. J. Graham, 2008 : Integrated Ladle Metallurgy Control, Thesis, McMaster University, Canada.
  9. K. J. Graham and G. A. Iron, 2009 : Toward Integrated Ladle Metallurgy Control, Iron and Steel Tech., 6(1), pp. 164-173.
  10. A. Harada, N. Maruoka, H. Shibata, et al., 2013 : A Kinetic M odel to Predict the Compositions of M etal, Slag and Inclusions during Ladle Refining: Part 1. Basic Concept and Application, ISIJ Int., 53(12), pp.2110-2117. https://doi.org/10.2355/isijinternational.53.2110
  11. A. Harada, N. Maruoka, H. Shibata, et al., 2013 : A Kinetic M odel to Predict the Compositions of M etal, Slag and Inclusions during Ladle Refining: Part 2. Condition to Control the Inclusion Composition, ISIJ Int., 53(12), pp. 2118-2125. https://doi.org/10.2355/isijinternational.53.2118
  12. S. -J. Kim, A. Harada and S. Kitamura, 2011 : Condition to suppress spinel formation in ladle treatment predicted by the kinetics simulation model, Proc. of AISTech 2015, 3261, Cleveland, Ohio, USA.
  13. J. -I. Kim, S. -J. Kim and S. Kitamura, 2018 : Effect of inclusions behaviors on the formation of Al2O3 and Spinel inclusions in ladle treatment by simulation model, Proc. of ICS 2018, CD-ROM, Venice, Italy.
  14. J. -I. Kim and S. -J. Kim, 2020 : Evolution of Mg-Al-based Inclusions with Changes in Mg Content during Ladle Treatment Based on a Coupled Reaction Model, ISIJ Int., 60(4), pp.691-698. https://doi.org/10.2355/isijinternational.isijint-2019-488
  15. J. -I. Kim and S. -J. Kim, 2020 : Influence of Cr Content in Steel on the Behavior of MgO·Al2O3 Spinel Inclusions During Ladle Treatment by Using Kinetic Reaction Model, Trans. Indian Inst. Met., Online-publised, Springer Link.
  16. M. -A. van Ende, Y. -M. Kim, M. -K. Cho, et al., 2011 : A Kinetic Model for the Ruhrstahl Heraeus (RH) Degassing Process, Metall. Mater. Trans. B, 42(3), pp.477-489. https://doi.org/10.1007/s11663-011-9495-4
  17. M. -A. van Ende and I. -H. Jung, 2014 : Development of a Thermodynamic Database for Mold Flux and Application to the Continuous Casting Process, ISIJ Int., 54(3), pp. 489-495. https://doi.org/10.2355/isijinternational.54.489
  18. M. -A. van Ende and I. -H. Jung, 2016 : A Kinetic Ladle Furnace Process Simulation Model: Effective Equilibrium Reaction Zone Model Using FactSage Macro Processing, Metall. Mater. Trans. B, 48(1), pp.28-36. https://doi.org/10.1007/s11663-016-0698-6
  19. J. H. Shin, Y. Chung and J. H. Park, 2017 : Refractory-Slag-Metal-Inclusion Multiphase Reactions Modeling Using Computational Thermodynamics: Kinetic Model for Prediction of Inclusion Evolution in Molten Steel, 48(1), pp. 46-59.
  20. J. H. Shin and J. H. Park, 2017 : Modification of Inclusions in Molten Steel by Mg-Ca Transfer from Top Slag: Experimental Confirmation of the 'Refractory-Slag-Metal-Inclusion (ReSMI)' Multiphase Reaction Model, Metall. Mater. Trans. B, 48(6), pp.2820-2825. https://doi.org/10.1007/s11663-017-1080-z
  21. J. Peter, K. D. Peaslee and D. G. C. Robertson, 2005 : Experimental Study of Kinetic Processes during the Steel Treatment at two LMFs, Proc. of AISTech 2005, pp.959-973.
  22. Q. Shu, O. Volkova, S. Lachmann, et al., 2011 : Modification of Inclusion Composition in Steel During Secondary Metallurgical Ladle Treatment - A Comprehensive Process Simulation Model, Proc of AISTech 2011, pp.537-547, Indianapolis, Ind., USA.
  23. T. Dubberstein, O. Volkova, S. Lachmann, et al., 2012 : Investigation on steel cleanliness of a heat resistant steel grade characterization of non-metallic inclusion in ladle treatment, Proc. of International Conference on Clean Steel 8.
  24. D. Kumar, K. C. Ahlborg and P. C. Pistorius, 2017 : Application of Kinetic Model for Industrial Scale Ladle Refining Process, Proc. of AISTech 2017, pp.2693-2706.
  25. G. Okuyama, K. Yamaguchi, S. Takeuchi, et al., 2000 : Effect of Slag Composition on the Kinetics of Formation of Al2O3-MgO Inclusions in Aluminum Killed Ferritic Stainless Steel, ISIJ Int., 40(2), pp.121-128. https://doi.org/10.2355/isijinternational.40.121
  26. Y. Tabatabaei, K. S. Coley, G. A. Irons, et al., 2018 : A Multilayer Model for Alumina Inclusion Transformation by Calcium in the Ladle Furnace, Metall. Trans. B, 49(1), pp.375-387. https://doi.org/10.1007/s11663-017-1120-8
  27. D. Mazumdar and R. I. L. Guthrie, 1995 : The Physical and Mathematical Modelling of Gas Stirred Ladle Systems, ISIJ Int., 35(1), pp.1-20. https://doi.org/10.2355/isijinternational.35.1
  28. M. Soder, P. Jonsson and L. Jonsson, 2004 : Inclusion Growth and Removal in Gas-Stirred Ladles, Steel Research Int., 75(2), pp.128-138. https://doi.org/10.1002/srin.200405938
  29. J. Aoki, L. Zhang and B. G. Thomas, 2005 : Modeling of Inclusion Removal in Ladle Refining, Proc. of The 3rd International Cong. On the Science and Technology of steelmaking, Warrandale, PA, Australia.
  30. W. Lou and M. Zhu, 2013 : Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles, Metall. Mater. Trans. B, 44(B), pp.762-782. https://doi.org/10.1007/s11663-013-9802-3
  31. Q. Cao and L. Nastac, 2018 : Numerical modelling of the transport and removal of inclusions in an industrial gas-stirred ladle, Ironmaking and Steelmaking, 45(10), pp.984-991. https://doi.org/10.1080/03019233.2018.1426697
  32. X. Wang, 2016 : Ladle furnace temperature prediction model based on large-scale data with random forest, IEEE/CAA Journal of Automatica Sinica, 4(4), pp.770-774. https://doi.org/10.1109/JAS.2016.7510247
  33. S. -J. Kim, 2019 : Past and present of secondary refining model for inclusion composition control, Kinzoku, 89(9), pp.53-59.
  34. FactSage 7.1, Thermfact/CRCR and GTT-Technologies, 1976-2020.
  35. H. X. Tian, Z. Z. Mao, 2009 : An ensemble ELM based on modified AdaBoost. RT algorithm for predicting the temperature of molten steel in ladle furnace, IEEE Trans. on Automation Science and Engineering, 7(1), pp.73-80. https://doi.org/10.1109/TASE.2008.2005640