DOI QR코드

DOI QR Code

Integrated Assessment for Commercialization of Road Hazardous Information Colleted by Commercial Vehicles

사업용 차량 기반 도로위험정보 제공의 상용화를 위한 통합 평가

  • Yoo, Kyung-su (Dept. of Road Transport, The Korea Transport Institute) ;
  • Chung, Kyungmin (Dept. of Road Transport, The Korea Transport Institute) ;
  • Chae, Chandle (Dept. of Road Transport, The Korea Transport Institute)
  • 유경수 (한국교통연구원 도로교통연구본부) ;
  • 정경민 (한국교통연구원 도로교통연구본부) ;
  • 채찬들 (한국교통연구원 도로교통연구본부)
  • Received : 2021.02.04
  • Accepted : 2021.03.22
  • Published : 2021.04.30

Abstract

The amount of compensation and the number of cases owing to car damage from pot holes on highways across the country increased by about 4.2 times and 3.5 times, respectively, in 2019 compared to 2015. Due to the increase in damage caused by these road hazards, the Ministry of Land, Infrastructure and Transport is developing technologies and services that can collect road hazard information by using devices on commercial vehicles (DTGs, black boxes, ADASs). In preparation for the development of these technologies, this study conducted an integrated assessment of algorithms developed for interrupted-flow and uninterrupted-flow traffic under three scenarios in order to provide road hazard information to drivers and road managers. As a result, the overall accuracy of the integrated assessment was derived at 81.88%. Errors generated in this integrated assessment reflect only missing data in less than 1 minute, GPS coordinate location and algorithm related errors, taking into account the purpose and assumptions of the assessment. Among them, we derive an accuracy of 90.15%overall by calibrating GPS error data. The results of this study can be used as basic data for improving the accuracy of location-based information collected by commercial vehicles and for policy development.

전국 고속도로의 포트홀 발생으로 인한 보상금액과 건수는 2015년 대비 2019년에 각각 약 4.2배, 3.5배 수준으로 증가하고 있으며, 이러한 도로 위 위험요소들로 인한 피해 증가로 국토교통부는 사업용 차량 내 장치(운행기록계, 블랙박스, ADAS)가 수집하는 정보를 활용하여 도로위험정보를 수집하고 제공할 수 있는 기술 및 서비스를 개발 중에 있다. 본 연구는 이러한 기술개발을 대비하여 운전자 및 도로관리자에게 도로위험정보를 제공하기 위해서 연속류 및 단속류를 대상으로 개발한 알고리즘에 대한 통합평가를 실시하여 설정한 3개 시나리오들을 검증하였다. 그 결과, 통합평가 전체 정확도가 81.88%로 도출되었고 통합평가의 목적과 가정을 고려하여 1분 미만 데이터의 누락, GPS 좌표 위치와 알고리즘 관련 오류들만 본 통합평가 시 발생한 오류로 간주하였다. 그 중에서 GPS 오류 데이터들을 보정하여 전체 90.15%(도로파손의 확률: 99.38%, 결빙: 84.45%,안개: 94.42%)의 정확도로 도출하였다. 본 연구결과는 사업용 차량이 수집할 위치기반 정보 정확도 향상 및 정책개발의 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. Chae C. D., Sim H. J. and Lee J. H.(2018), "Integration and Decision Algorithm for Location-Based Road Hazardous Data Collected by Probe Vehicles," The Journal of the Korea Institute of Intelligent Transportation Systems, vol. 17, no. 6, pp.173-184. https://doi.org/10.12815/kits.2018.17.6.173
  2. Cho J. S., Lee H. S., Lee J. Y. and Kim D. N.(2017), "The Hazardous Expressway Sections for Drowsy Driving Using Digital Tachograph in Truck," Journal of Korean Society of Transportation, vol. 35, no. 2, pp.160-168. https://doi.org/10.7470/jkst.2017.35.2.160
  3. Cho Y. H.(2014), "Technology Trends for Improving Location Information Accuracy," Weekly ICT Trends, Institute for Information&Communication Technology Promotion(Daejeon, Korea), p.2.
  4. Choe T. S., Kang J. M., Kim H. S. and Park J. B.(2016), "Low-end GPS Position Accuracy Enhancement Method by using Map Information," The Korean Institute of Electrical Engineers, vol. 65, no. 4, pp.659-665. https://doi.org/10.5370/KIEE.2016.65.4.659
  5. Dailian, https://www.dailian.co.kr/news/view/926361, 2020.12.29.
  6. Jagadeesh G. R., Srikanthan T. and Zhang X. D.(2004), "A Map Matching Method for GPS Based Real-Time Vehicle Location," The Journal of Navigation, vol. 57, no. 3, pp.429-440. https://doi.org/10.1017/S0373463304002905
  7. Kang J. M.(2016), The Real-time Localization in Urban Area Based on Map Matching Method, Master's thesis, Electrical and Electronic Engineering of Younsei Univ., Seoul, pp.5-21.
  8. Kim J. D., Han S. H. and Kim Y. K.(2019), "Implementation of Road Risk Information Notice Device," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 4, pp.438-444. https://doi.org/10.6109/JKIICE.2019.23.4.438
  9. Lee J. M., Park K. D. and Jeong W. S.(2017), "Analysis of Positioning Accuracy for DGNSS-based Land Navigation Using GPS/BDS Navigation Satellite System," Transactions of KSAE, vol. 25, no. 4, pp.422-429. https://doi.org/10.7467/KSAE.2017.25.4.422
  10. Lee S. H., Lee C. K., Yun I. S., Kim N. S. and Kang D. M.(2015), "Study on Map Matching Using Characteristics of Vehicular Movements," International Journal of Highway Engineering, vol. 17, no. 5, pp.75-82.
  11. Min J. Y.(2016), "Development of road hazard weather information production technology using CCTV image processing," Korean Meteorological Society, pp.478-479.
  12. Ochieng W. Y., Quddus M. A. and Noland R. B.(2003), "Map-matching in complex urban road networks," J. of Cartography, vol. 55, no. 2, pp.1-14.
  13. Sim H. J., Chae C. D., Kang M. J. and Lee J. H.(2019), "Analysis on Accuracy of GPS installed in Digital Tachograph of Commercial vehicles," The Journal of the Korea Institute of Intelligent Transportation Systems, vol. 18, no. 6, pp.164-175. https://doi.org/10.12815/kits.2019.18.6.164
  14. Yoon S. J. and Kim T. J.(2018), "Development of GPS Multipath Error Reduction Method Based on Image Processing in Urban Area," Korea Society of Surveying, Geodesy, Photogrammetry, and Cartography, vol. 36, no. 2, pp.105-112.