참고문헌
- AIJ (2015), Recommendations for Loads on Buildings, Architectural Institute of Japan; Tokyo, Japan.
- Baker CJ (2016), "Debris flight in tornadoes", 8th International Colloquium on Bluff Body Aerodynamics and Applications, Boston, USA, June.
- Bezabeh, M.A., Gairola, A., Bitsuamlak, G.T., Popovski, M. and Tesfamariam, S. (2018), "Structural performance of multi-story mass-timber buildings under tornado-like wind field", Eng. Struct., 177(15), 519- 539. https://doi.org/10.1016/j.engstruct.2018.07.079.
- Burgers, J.M. (1948), "A mathematical model illustrating the theory of turbulence", Advan. Appl. Mech., 1(1948), 171-199. https://doi.org/10.1016/S0065-2156(08)70100-5.
- Church, C.R., Snow, J.T., Baker, G.L. and Agee, E.M. (1979), "Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation", J. Atmos. Sci., 36(9), 1755-1776. https://doi.org/10.1175/15200469(1979)036%3C1755:COTLVA%3E2.0.CO;2.
- Davies Jones, R., Trapp, R.J. and Bluestein, H.B. (2001), "Tornadoes and tornadic storms", Meteor. Mon., 28(50), 167-221. https://doi.org/10.1007/978-1-935704-06-5_5.
- Fricker, T. (2020), "Evaluating tornado casualty rates in the United States", Int. J. Disast. Risk. Re., 47, 101535. https://doi.org/10.1016/j.ijdrr.2020.101535.
- Fujita, T.T. (1978), Workbook of Tornadoes and High Winds for Engineering Applications, Univ. Chicago., Chicago, Illinois, U.S.A.
- Haan, F.L., Sarkar, P.P. and Gallus, W.A. (2008), "Design, construction and performance of a large tornado simulator for wind engineering applications", Eng. Struct., 30(4), 1146-1159. https://doi.org/10.1016/j.engstruct.2007.07.010.
- Hamada, A. and El Damatty, A.A. (2016), "Behaviour of transmission line conductors under tornado wind", Wind Struct., 22(3), 369-391. https://doi.org/10.12989/was.2016.22.3.369.
- Hamada, A., El Damatty, A.A., Hangan, H. and Shehata, A.Y. (2010), "Finite element modelling of transmission line structures under tornado wind loading", Wind Struct., 13(5), 451. https://doi.org/10.12989/was.2010.13.5.451
- Hou, F. and Sarkar, P.P. (2020), "Aeroelastic model tests to study tall building vibration in boundary-layer and tornado winds", Eng. Struct., 207, 110259. https://doi.org/10.1016/j.engstruct.2020.110259.
- Houze, Jr, R.A. (2014), Cloud Dynamics. Academic press.
- Ishihara, T., Oh, S. and Tokuyama, Y. (2011), "Numerical study on flow fields of tornado-like vortices using the LES turbulence model", J. Wind Eng. Ind. Aerod., 99(4), 239-248. https://doi.org/10.1016/j.jweia.2011.01.014.
- Kim, Y.C. (2018), "Comparison of tornadic wind loads from various numerical expressions", International Workshop on Wind-Related Disasters and Mitigation, Paper ID 57, Sendai, Japan, March.
- Kim, Y.C. and Matsui, M (2017), "Analytical and empirical models of tornado vortices: A comparative study", J. Wind Eng. Ind. Aerod., 171, 230-247. https://doi.org/10.1016/j.jweia.2017.10.009.
- Kim, Y.C. and Tamura, Y. (2020), "Numerical modeling of one-cell tornado vortices", J. Struct. Eng., Paper ID 27.
- Kopp GA, Wu CH (2020), "A framework to compare wind loads on low-rise buildings in tornadoes and atmospheric boundary layers", J. Wind Eng. Ind. Aerod., 204, 104269. https://doi.org/10.1016/j.jweia.2020.104269
- Kosiba, K. and Wurman, J. (2010), "The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998 Tornado", J. Atmos. Sci., 67(9), 3074 - 3083. https://doi.org/10.1175/2010JAS3416.1.
- Kosiba, K. and Wurman, J. (2013), "The three-dimensional structure and evolution of a tornado boundary layer", Weather Forecast, 28(6), 1552-1561. https://doi.org/10.1175/WAF-D-13-00070.1.
- Kuo, H.L. (1971), "Axisymmetric flows in the boundary layer of a maintained vortex", J. Atmos. Sci., 28(1), 20-40. https://doi.org/10.1175/15200469(1971)028%3C0020:AFITBL%3E2.0.CO;2.
- Le, T.H. and Caracoglia, L. (2015), "Exploring the simulation of the stochastic response of a tall building in a tornado-like wind", The 16th Asia Pacific Vibration Conference, Hanoi, Vietnam.
- Li, T., Yan, G., Feng, R. and Mao, X. (2020), "Investigation of the flow structure of single- and dual-celled tornadoes and their wind effects on a dome structure", Eng. Struct., 209, 109999. https://doi.org/10.1016/j.engstruct.2019.109999.
- Liu, M. and Matsui, M. (2018), "Measurement of three velocity components of tornado-like flow by stereo PIV and their mean velocity fields", The 25th Proceedings of National Symposium on Wind Engineering, 67-72
- Liu, Z. and Ishihara, T. (2016), "Study of the effects of translation and roughness on tornado-like vortices by large-eddy simulations", J. Wind Eng. Ind. Aerod., 151, 1-24. https://doi.org/10.1016/j.jweia.2016.01.006.
- Liu, Z., Zhang, C. and Ishihara, T. (2018), "Numerical study of the wind loads on a cooling tower by a stationary tornado-like vortex through LES", J. Fluid Struct., 81, 656-672. https://doi.org/10.1016/j.jfluidstructs.2018.06.001.
- McDonald, J.R. and Mehta, K.C. (2006), "A recommendation for an enhanced Fujita Scale (EF-Scale)", Wind Science Engineering Center, Texas Tech University.
- Natarajan, D. and Hangan, H. (2012), "Large-eddy simulations of translation and surface roughness effects on tornado-like vortices", J. Wind Eng. Ind. Aerod., 104-106, 577 - 584. https://doi.org/10.1016/j.jweia.2012.05.004.
- Rankine, W.J.M. (1882), A Manual of Applied Physics, Charles Griff and Co.
- Razavi, A. and Sarkar, P.P. (2021), "Effects of roof geometry on tornado-induced structural actions of a low-rise building", Eng. Struct., 226, 111367. https://doi.org/10.1016/j.engstruct.2020.111367.
- Refan, M. and Hangan, H. (2016), "Characterization of tornado-like flow fields in a new model scale wind testing chamber", J. Wind Eng. Ind. Aerod., 151, 107-121. https://doi.org/10.1016/j.jweia.2016.02.002.
- Refan, M., Hangan, H., Wurman, J. and Kosiba, K. (2017), "Doppler radar-derived wind field of five tornado events with application to engineering simulations", Eng. Struct., 148, 509-521. https://doi.org/10.1016/j.engstruct.2017.06.068.
- Ripberger, J.T., Jenkins Smith, H.C., Silva, C.L., Czajkowski, J., Kunreuther, H. and Simmons, K.M. (2018), "Tornado damage mitigation: Homeowner support for enhanced building codes in Oklahoma", Risk Anal., 38(11), 2300-2317. https://doi.org/10.1111/risa.13131.
- Rott, N. (1958), "On the viscous core of a line vortex", Z. Angew. Math. Phys., 9(5-6), 543-553. https://doi.org/10.1007/BF02424773.
- Tamura, Y., Kikuchi, H. and Hibi, K. (2008), "Peak normal stresses and effects of wind direction on wind load combinations of medium-rise buildings", J. Wind Eng. Ind. Aerod., 96(6-7), 1043-1057. https://doi.org/10.1016/j.jweia.2007.06.027.
- Tang, Z., Wu, L., Feng, C., Zuo, D. and James, D. (2017), "Effect of aspect ratio on tornado-like vortices simulated a large-scale tornado simulator", The 13th Americas Conference on Wind Engineering, Florida, U.S.A.
- Tari, P.H., Gurka, R. and Hangan, H. (2010), "Experimental investigation of tornado-like vortex dynamics with swirl ratio: the mean and turbulent flow field", J. Wind Eng. Ind. Aerod., 98(1-2), 936-944. https://doi.org/10.1016/j.jweia.2010.10.001.
- Wang, M., Cao, S. and Cao, J. (2020), "Tornado-like-vortex-induced wind pressure on a low-rise building with opening in roof corner", J. Wind Eng. Ind. Aerod., 205, 104308. https://doi.org/10.1016/j.jweia.2020.104308.
- Wen, Y.K. (1975), "Dynamic tornadic wind loads on tall buildings", J. Struct. Div., 101(ST1), 169-185. https://doi.org/10.1061/JSDEAG.0003967.