DOI QR코드

DOI QR Code

Growth of 3D TiO2 Nano-wall-like Structure with High Effective Surface Area

높은 유효 표면적을 갖는 3차원 TiO2 나노벽 유사구조의 성장

  • Kim, Mee-Ree (Department of Intelligent Information Convergence, Mokwon University) ;
  • Kim, Ki-Chul (Department of Intelligent Information Convergence, Mokwon University)
  • 김미리 (목원대학교 지능정보융합학과) ;
  • 김기출 (목원대학교 지능정보융합학과)
  • Received : 2021.01.05
  • Accepted : 2021.04.02
  • Published : 2021.04.30

Abstract

Nano-materials with high effective surface areas have been applied to functional materials, such as high sensitive gas sensors and biosensors and high-efficiency catalytic materials. In this study, titanate sheets with a 3D nano-wall-like structure, high effective surface area, were synthesized vertically to the substrate by a chemical bath deposition (CBD) process using a Ti sheet and urea. The synthesis temperature and synthesis duration time were controlled to the optimal conditions of a 3D nano-wall-like structure in the CBD process. The synthesized ammonium titanate sheets with a 3D nano-wall-like structure were annealed in air to transform to TiO2 with a 3D nano-wall-like structure for various applications. As a result, the optimal temperature in the CBD process for the synthesis of a uniform ammonium titanate sheet with a 3D nano-wall-like structure was 90 ℃. TiO2 with a 3D nano-wall-like structure was obtained from the ammonium titanate sheet with a 3D nano-wall-like structure by annealing above 550 ℃ for three hours. In particular, TiO2 with a 3D nano-wall-like structure with a dominant rutile phase was obtained by post-annealing at 700 ℃. On the other hand, damage to the 3D nano-wall edge was observed after 700 ℃ post-annealing.

높은 유효 표면적을 갖는 나노소재는 고감도 가스센서와 바이오센서 및 높은 촉매효율을 구현하는 기능성 소재로 활용되고 있다. 본 연구에서는 Ti Sheet와 Urea를 이용하는 Chemical Bath Deposition(CBD) 공정으로 기판에 수직한 방향으로 성장하는, 높은 유효 표면적을 갖는 3차원 나노벽 유사구조의 Titanate Sheet를 합성하였다. CBD 공정에서 합성온도 및 합성시간 등을 조절하여 3차원 나노벽 유사구조의 최적 합성조건을 탐색하였다. 합성된 3차원 나노벽유사구조의 Ammonium Titanate를 공기 중에서의 열처리 공정을 통하여 다양한 용도로 활용되는 TiO2 3차원 나노벽유사구조로 변환시켰다. 연구결과 3차원 나노벽 유사구조의 Ammonium Titanate가 균일하게 성장되는 CBD 합성온도는 90 ℃이었고, 550 ℃ 이상에서 3시간 열처리하였을 경우, 3차원 나노벽 유사구조의 TiO2 상으로 변환되었다. 특히 700 ℃에서 열처리하였을 경우, Rutile 상이 우세한 TiO2 3차원 나노벽 유사구조를 얻을 수 있었다. 하지만 700 ℃의 열처리에서는 3차원 나노벽의 가장자리가 손상되는 현상이 발생하였다.

Keywords

References

  1. J. N. Tiwari, R. N. Tiwari, K. S. Kim "Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices", Progress in Materials Science, Vol. 57, pp. 724-803, 2012. DOI: https://doi.org/10.1016/j.pmatsci.2011.08.003
  2. A. Pick, G. Witte, "Patterned growth of organic semiconductor: Selective nucleation of perylene on self-assembled monolayers", Langmuir, Vol. 32, pp. 8019-8028, 2016. DOI: https://doi.org/10.1021/acs.langmuir.6b01833
  3. B. H. Lee, M. M. Sung, "Selective atomic layer deposition of metal oxide thin films on patterned self-assembled monolayers formed by microcontact printing", Journal of Nanoscience and Nanotechnology, Vol. 7, No. 11, pp. 3758-3764, 2007. DOI: https://doi.org/10.1166/jnn.2007.18067
  4. M. H. Park, Y. J. Jang, H. M. Sung-Suh, M. M. Sung, "Selective atomic layer deposition of titanium oxide on patterned self-assembled monolayers formed by microcontact printing", Langmuir, Vol. 20, pp. 2257-2260, 2004. DOI: https://doi.org/10.1021/la035760c
  5. W. Zhao, H. Y. Low, P. S. Suresh, "Cross-linked and chemically functionalized polymer supported by reactive reversal nanoimprint lithography", Langmuir, Vol. 22, pp. 5520-5524, 2006. DOI: https://doi.org/10.1021/la052523w
  6. W-B Jung, S-Y. Cho, B. L. Suh, H-W. Yoo, H-J Jeon, J. Kim, H-T. Jung, "Polyelemental nanolithography via plasma ion bombardment: From fabrication to superior H2 sensing application", Advanced Materials, Vol. 31, Issue 6, p. 1805343, 2018. DOI: https://doi.org/10.1002/adma.201805343
  7. E. Hosono, S. Fujihara, T. Kimura, "Fabrication of nanoparticulate porous LaOF films through film growth and thermal decomposition of Ion-modified Lanthanum diacetate hydroxide", Langmuir, Vol. 20, pp. 3769-3774, 2004. DOI: https://doi.org/10.1021/la036370t
  8. S. Fujihara, E. Hosono, T. Kimura, "Fabrication of porous metal oxide semiconductor films by a self-template method using layered hydroxide metal acetate", Journal of Sol-Gel Science and Technology, Vol. 31, pp. 165-168, 2004. https://doi.org/10.1023/B:JSST.0000047980.69279.9b
  9. E. Hosono, S. Fujihara, I. Honma, H. Zhou, "The fabrication of an upright-standing zinc oxide nanosheet for use in dye-sensitized solar cells", Advanced Materials, Vol. 17, pp. 2091-2094, 2005. DOI: https://doi.org/10.1002/adma.200500275
  10. E. Hosono, S. Fujihara, T. Kimura, H. Imai, "Growth of layered basic zinc acetate in methanolic solutions and its pyrolytic transformation into porous zinc oxide films", Journal of Colloid and Interface Science, Vol. 272, pp. 391-398, 2004. DOI: https://doi.org/10.1016/j.jcis.2003.10.005
  11. E. Hosono, H. Matsuda, I. Honma, M. Ichihara, H. Zhou, "Synthesis of a perpendicular TiO2 nanosheet film with the superhydrophilic property without UV irradiation", Langmuir, Vol. 23, pp. 7447-7450, 2007. DOI: https://doi.org/10.1021/la701117a
  12. M. Ge, J. W. Li, L. Liu, Z. Zhou, "Template-free synthesis and photocatalytic application of rutile TiO2 hierarchical nanostructures", Industrial and Engineering Chemistry Research, Vol. 50, pp. 6681-6687, 2011. DOI: https://dx.doi.org/10.1021/ie1023113
  13. A. Das, M. Patra, R. R. Wary, P. Gupta, R. G. Nair, "Photocatalytic performance analysis of Degusa P25 under various laboratory conditions", IOP Conf. Series: Materials Science and Engineering, Vol. 377, p. 012101, 2018. DOI: https://doi.org/10.1088/1757-899X/377/1/012101
  14. Y. H. Jang, X. Xin, M. Byun, Y. J. Jang, Z. Lin, D. H. Kim, "An unconventional route to high-efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticle photoanode", Nano Letters, Vol. 12, pp. 479-485, 2012. DOI: https://dx.doi.org/10.1021/nl203901m
  15. M. Madian, A. Eychmuller, L. Giebeler, "Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries", Batteries, Vol. 4, p.7, 2018. DOI: https://doi.org/10.3390/batteries4010007