DOI QR코드

DOI QR Code

Antiviral Treatment Reveals a Cooperative Pathogenicity of Baculovirus and Iflavirus in Spodoptera exigua, a Lepidopteran Insect

  • Roy, Miltan Chandra (Department of Plant Medicals, College of Life Sciences, Andong National University) ;
  • Ahmed, Shabbir (Department of Plant Medicals, College of Life Sciences, Andong National University) ;
  • Mollah, Md. Mahi Imam (Department of Plant Medicals, College of Life Sciences, Andong National University) ;
  • Kim, Yonggyun (Department of Plant Medicals, College of Life Sciences, Andong National University)
  • 투고 : 2020.12.25
  • 심사 : 2021.01.18
  • 발행 : 2021.04.28

초록

The beet armyworm, Spodoptera exigua, is a serious insect pest infesting various vegetable crops. Two infectious insect viruses, baculovirus and iflavirus, are known to induce epizootics in S. exigua populations. Indeed, some laboratory colonies have appeared to be covertly infected by these viruses. Diagnostic PCR tests detected two different viruses: Spodoptera exigua multiple nucleopolyhedrosis virus (SeMNPV) and iflaviruses (SeIfV1 and SeIfV2). Viral extract from dead larvae of S. exigua could infect Sf9 cells and produce occlusion bodies (OBs). Feeding OBs to asymptomatic larvae of S. exigua caused significant viral disease. Interestingly, both SeIfV1 and SeIfV2 increased their titers at late larval stages. Sterilization of laid eggs with 1% sodium hypochloride significantly reduced SeMNPV titers and increased larval survival rate. Double-stranded RNA (dsRNA) specific to SeIfV1 or SeIfV2 significantly reduced viral titers and increased larval survival rate. To continuously feed dsRNA, a recombinant Escherichia coli HT115 expressing SeIfV1-dsRNA was constructed with an L4440 expression vector. Adding this recombinant E. coli to the artificial diet significantly reduced the SeIfV1 titer and increased larval survival. These results indicate that laboratory colony collapse of S. exigua is induced by multiple viral infections. In addition, either suppression of SeMNPV or SeIfV infection significantly increased larval survival, suggesting a cooperative pathogenicity between baculovirus and iflavirus against S. exigua.

키워드

참고문헌

  1. Possee RD, Griffiths CM, Hitchman RB, Chambers A, Murguia-Meca F, Danquah J, et al. 2010. Baculoviruses: biology, replication and exploitation. In: Insect Virology (Eds. Asgari, S., Johnson, K.N.). pp. 35-57, Caister Academic Press, Norfolk, UK.
  2. Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF, et al. 2006. On the classification and nomenclature of baculoviruses: a proposal for revision. Arch. Virol. 151: 1257-1266. https://doi.org/10.1007/s00705-006-0763-6
  3. Jiang Y, Deng F, Rayner S, Wang H and Hu Z. 2009. Evidence of a major role of GP64 in group I alphabaculovirus evolution. Virus Res. 142: 85-91. https://doi.org/10.1016/j.virusres.2009.01.015
  4. Zanotto PM, Kessing BD and Maruniak JE. 1993. Phylogenetic interrelationships among baculoviruses: evolutionary rates and host associations. J. Invertebr. Pathol. 62: 147-164. https://doi.org/10.1006/jipa.1993.1090
  5. Herniou EA, Olszewski JA, O'Reilly DR and Cory JS. 2004. Ancient coevolution of baculoviruses and their insect hosts. J. Virol. 78: 3244-3251. https://doi.org/10.1128/JVI.78.7.3244-3251.2004
  6. Javed MA, Biswas S, Willis LG, Harris S, Pritchard C, van Oers MM, et al. 2017. Autographa californica multiple nucleopolyhedrovirus AC83 is a per os infectivity factor (PIF) protein required for occlusion-derived virus (ODV) and budded virus nucleocapsid assembly as well as assembly of the PIF complex in ODV envelopes. J. Virol. 91: 2115-2116.
  7. Smagghe G, Pineda S, Carton B, Del Estal P, Budia F and Vinuela E. 2003. Toxicity and kinetics of methoxyfenozide in greenhouse-selected Spodoptera exigua (Lepidoptera: Noctu-idae). Pest Manag. Sci. 59: 1203-1209. https://doi.org/10.1002/ps.756
  8. Osorio A, Martinez AM, Schneider MI, Diaz O, Corrales JL, Aviles MC, et al. 2008. Monitoring of beet armyworm resistance to spinosad and methoxyfenozide in Mexico. Pest Manag. Sci. 64: 1001-1007. https://doi.org/10.1002/ps.1594
  9. Moscardi F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44: 257-290. https://doi.org/10.1146/annurev.ento.44.1.257
  10. Sun XL and Peng H. 2007. Recent advances in biological control of pest Insects by using viruses in China. Virol. Sin. 22: 158-162. https://doi.org/10.1007/s12250-007-0017-0
  11. Chen Y, Qi B, Zheng G, Zhang Y, Deng F, Wan F, et al. 2019. Identification and genomic sequence analysis of a new Spodoptera exigua multiple nucleopolyhedrovirus, SeMNPV-QD, isolated from Qingdao, China. J. Invertebr. Pathol. 160: 8-17. https://doi.org/10.1016/j.jip.2018.11.006
  12. ICTV. 2014. International Committee on Taxonomy of Viruses http://www.ictvonline.org/virusTaxonomy.asp.
  13. Choi JY, Kim YS, Wang Y, Shin SW, Kim I, Tao XY, et al. 2012. Complete genome sequence of a novel picorna-like virus isolated from Spodoptera exigua. J. Asia Pac. Entomol. 15: 259-263. https://doi.org/10.1016/j.aspen.2012.01.006
  14. Millan-Leiva A, Jakubowska AK, Ferre J and Herrero S. 2012. Genome sequence of SeIV-1, a novel virus from the Iflaviridae family infective to Spodoptera exigua. J. Invertebr. Pathol. 109: 127-133. https://doi.org/10.1016/j.jip.2011.10.009
  15. Himeno M, Onodera K and Tanami Y. 1974. Properties of flacherie virus of the silkworm, Bombyx mori. J. Invertebr. Pathol. 23: 164-171. https://doi.org/10.1016/0022-2011(74)90180-3
  16. Yue C, Schroder M, Gisder S and Genersch E. 2007. Vertical-transmission routes for deformed wing virus of honeybees (Apis mellifera). J. Gen. Virol. 88: 2329-2336. https://doi.org/10.1099/vir.0.83101-0
  17. van Oers MM. 2010. Genomics and biology of iflaviruses. In: Insect Virology, Asgari, S., Johnson, K. (Eds.). pp. 231-250. Caister Academic Press, Norfolk, UK.
  18. Vail PV, Morris TJ, Collier SS and Mackey B. 1983. An RNA virus in Autographa californica nuclear polyhedrosis virus preparations: incidence and influence on baculovirus activity. J. Invertebr. Pathol. 41: 171-178. https://doi.org/10.1016/0022-2011(83)90216-1
  19. Jakubowska AK, D'Angiolo M, Gonzalez-Martinez RM, Millan-Leiva A, Carballo A, Murillo R, et al. 2014. Simultaneous occurrence of covert infections with small RNA viruses in the lepidopteran Spodoptera exigua. J. Invertebr. Pathol. 121: 56-63. https://doi.org/10.1016/j.jip.2014.06.009
  20. Jakubowska AK, Murillo R, Carballo A, Williams T, van Lent JW, Caballero P, et al. 2016. Iflavirus increases its infectivity and physical stability in association with baculovirus. PeerJ. 4: e1687. https://doi.org/10.7717/peerj.1687
  21. Carballo A, Williams T, Murillo R and Caballero P. 2020. Iflavirus covert infection increases susceptibility to nucleopolyhedrovirus disease in Spodoptera exigua. Viruses 12: 509. https://doi.org/10.3390/v12050509
  22. Szelei J, Woodring J, Goettel MS, Duke G, Jousset FX, Liu KY, et al. 2011. Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. J. Invertebr. Pathol. 106: 394-399. https://doi.org/10.1016/j.jip.2010.12.009
  23. Kariithi HM, van Oers MM, Vlak JM, Vreysen MJ, Parker AG and Abd-Alla AM. 2013. Virology, epidemiology and pathology of Glossina hytrosavirus, and its control prospects in laboratory colonies of the tsetse fly, Glossina pallidipes (Diptera; Glossinidae). Insects 4: 287-319. https://doi.org/10.3390/insects4030287
  24. Mordecai GJ, Brettell LE, Pachori P, Villalobos EM, Martin SJ, Jones IM, et al. 2016. Moku virus; a new iflavirus found in wasps, honey bees and Varroa. Sci. Rep. 6: 34983. https://doi.org/10.1038/srep34983
  25. Goh HG, Lee SG, Lee BP, Choi KM, Kim JH. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29: 180-183.
  26. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, et al. 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55: 611-622. https://doi.org/10.1373/clinchem.2008.112797
  27. Livak KJ and Schmittgen TD. 2001. Analysis of relative gene expression data analysis using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  28. Choi JY, Woo SD, Je YH and Kang SK. 1999. Development of a novel expression vector system using Spodoptera exigua nucleopolyhedrovirus. Mol. Cells 9: 504-509.
  29. Vatanparast M, Ahmed S, Herrero S and Kim Y. 2018. A non-venomous sPLA2 of a lepidopteran insect: Its physiological functions in development and immunity. Dev. Comp. Immunol. 89: 83-92. https://doi.org/10.1016/j.dci.2018.08.008
  30. Kim E, Park Y and Kim Y. 2015. A transformed bacterium expressing double-stranded RNA specific to integrin β1 enhances Bt toxin efficacy against a polyphagous insect pest, Spodoptera exigua. PLoS One 10: e0132631. https://doi.org/10.1371/journal.pone.0132631
  31. SAS Institute Inc. 1989. SAS/STAT User's Guide. SAS Institute, Cary, NC.
  32. Virto C, Navarro D, Tellez MM, Herrero S, Williams T, Murillo R, et al. 2014. Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring. J. Invertebr. Pathol. 122: 22-27. https://doi.org/10.1016/j.jip.2014.07.007
  33. Sanekata T, Fukuda T, Miura T, Morino H, Lee C, Maeda K, et al. 2010. Evaluation of the antiviral activity of chlorine dioxide and sodium hypochlorite against feline calicivirus, human influenza virus, measles virus, canine distemper virus, human herpesvirus, human adenovirus, canine adenovirus and canine parvovirus. Biocontrol. Sci.15: 45-49. https://doi.org/10.4265/bio.15.45
  34. Cory JS. 2010. The ecology of baculoviruses. In: Insect virology (Eds. Asgari, S., Johnson, K.), pp. 411-427. Caister Academic Press, Norfolk, UK.
  35. Murillo R, Hussey MS and Possee RD. 2011. Evidence for covert baculovirus infections in a Spodoptera exigua laboratory culture. J. Gen. Virol. 92: 1061-1070. https://doi.org/10.1099/vir.0.028027-0
  36. Carballo A, Murillo R, Jakubowska A, Herrero S, Williams, T and Caballero P. 2017. Co-infection with iflaviruses influences the insecticidal properties of Spodoptera exigua multiple nucleopolyhedrovirus occlusion bodies: Implications for the production and biosecurity of baculovirus insecticides. PLoS One 12: e0177301. https://doi.org/10.1371/journal.pone.0177301
  37. Guo HF, Fang JC, Wang JP, Zhong WF and Liu BS. 2007. Interaction of Xestia c-nigrum granulovirus with peritrophic matrix and Spodoptera litura nucleopolyhedrovirus in Spodoptera litura. J. Econ. Entomol. 100: 20-25. https://doi.org/10.1603/0022-0493(2007)100[20:IOXCGW]2.0.CO;2
  38. Granados RR and Lawler KA. 1981. In vivo pathway of Autographa californica baculovirus invasion and infection. Virology 108: 297-308. https://doi.org/10.1016/0042-6822(81)90438-4
  39. Sabin LR, Zhou R, Gruber JJ, Lukinova N, Bambina S, Berman A, et al. 2009. Ars2 regulates both miRNA- and siRNA- dependent silencing and suppresses RNA virus infection in Drosophila. Cell. 138: 340-351. https://doi.org/10.1016/j.cell.2009.04.045
  40. Denecke S, Swevers L, Douris V and Vontas J. 2018. How do oral insecticidal compounds cross the insect midgut epithelium? Insect Biochem. Mol. Biol. 103: 22-35. https://doi.org/10.1016/j.ibmb.2018.10.005
  41. Toprak U, Harris S, Baldwin D, Theilmann D, Gillott C, Hegedus DD, et al. 2012. Role of enhancin in Mamestra configurata nucleopolyhedrovirus virulence: selective degradation of host peritrophic matrix proteins. J. Gen. Virol. 93: 744-753. https://doi.org/10.1099/vir.0.038117-0
  42. Wu K, Yang B, Huang WR, Dobens L, Song HS and Ling EJ. 2016. Gut immunity in Lepidopteran insects. Dev. Comp. Immunol. 64: 65-74. https://doi.org/10.1016/j.dci.2016.02.010
  43. Hoffmann JA. 2003. The immune response of Drosophila. Nature 426: 33-38. https://doi.org/10.1038/nature02021
  44. Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A, Tomimoto K, et al. 2008. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem. Mol. Biol. 38: 1087-1110. https://doi.org/10.1016/j.ibmb.2008.09.001
  45. Ponnuvel KM, Nakazawa H, Furukawa S, Asaoka A, Ishibashi J, Tanaka H, et al. 2003. A lipase isolated from the silkworm Bombyx mori shows antiviral activity against nucleopolyhedrovirus. J. Virol. 77: 10725-10729. https://doi.org/10.1128/JVI.77.19.10725-10729.2003
  46. Nakazawa H, Tsuneishi E, Ponnuvel KM, Furukawa S, Asaoka A, Tanaka H, et al. 2004. Antiviral activity of a serine protease from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus. Virology 321: 154-162. https://doi.org/10.1016/j.virol.2003.12.011
  47. Ponnuvel KM, Nithya K, Sirigineedi S, Awasthi AK and Yamakawa M. 2012. In vitro antiviral activity of an alkaline trypsin from the digestive juice of Bombyx mori larvae against nucleopolyhedrovirus. Arch. Insect Biochem. Physiol. 81: 90-104. https://doi.org/10.1002/arch.21046
  48. Chen Y, Guo L, Wan N, Ji X, Zhang H and Jiang J. 2020. Transcriptomic analysis of the interactions between the Spodoptera exigua midgut and nucleopolyhedrovirus. Pestic. Biochem. Physiol. 163: 241-253. https://doi.org/10.1016/j.pestbp.2019.11.020
  49. White G. 1913. Sacbrood, a disease of bees. US Dept. Agr. Bur. Entomol. Circ. 169.
  50. Bradbear N. 1988. World distribution of major honey bee diseases and pests. Bee World 69: 15-39. https://doi.org/10.1080/0005772X.1988.11098943
  51. Yue C and Genersch E. 2005. RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J. Gen. Virol. 86: 3419-3424. https://doi.org/10.1099/vir.0.81401-0
  52. Johnson RM, Evans JD, Robinson GE and Berenbaum MR. 2009. Changes in transcript abundance relating to colony collapse disorder in honey bees (Apis mellifera). Proc. Natl. Acad. Sci. USA 106: 14790-14795. https://doi.org/10.1073/pnas.0906970106
  53. Isawa H, Asano S, Sahara K, Iizuka T and Bando H. 1998. Analysis of genetic information of an insect picorna-like virus, infectious flacherie virus of silkworm: evidence for evolutionary relationships among insect, mammalian and plant picorna(-like) viruses. Arch. Virol. 143: 127-143. https://doi.org/10.1007/s007050050273
  54. Fuxa JR. 2004. Ecology of insect nucleopolyhedrosises. Agr. Ecosyst. Environ. 103: 27-43. https://doi.org/10.1016/j.agee.2003.10.013
  55. Kukan B. 1999. Vertical transmission of nucleopolyhedrosis in insects. J. Invertebr. Pathol. 74: 103-111. https://doi.org/10.1006/jipa.1999.4873
  56. Dwyer G, Dushof J and Yee SH. 2004. The combined effects of pathogens and predators on insect outbreaks. Nature 430: 341-345 https://doi.org/10.1038/nature02569