참고문헌
- Abramowicz D, Schandene L, Goldman L, Michel G, Alain C, Pierre V, et al. 1989. Release of tumour necrosis factor, Interleukin-2 and gamma interferon in serum after injection of OKT3 monoclonal antibody in kidney transplant recipients. Transplantation 47: 606-608. https://doi.org/10.1097/00007890-198904000-00008
- Boulianne GL, Hozumi N, Shulman M J. 1984. Production of functional chimeric mouse/human antibody. Nature 312: 643-646. https://doi.org/10.1038/312643a0
- Cole SP, Campling BG, Atlaw T, kozbor D, Roder J C. 1984. Human monoclonal antibodies. Mol. Cell. Biochem. 62: 109-120. https://doi.org/10.1007/BF00223301
- NIBRT and The Medicine maker (Texere Publishing). 2019. Trends in Biopharma manufacturing survey report. Available from https://www.nibrt.ie/wp-content/uploads/2019/03/Biopharma_Trends_Survey_Mar19.pdf. Accessed Oct. 17, 2019
- Grilo AL, Mantalaris A. 2019. The increasing human and profitable monoclonal antibody market. Trends Biotechnol. 37: 9-16. https://doi.org/10.1016/j.tibtech.2018.05.014
- Helene K, Janice MR. 2018. Antibodies to watch in 2019. MAbs 11: 219-238. https://doi.org/10.1080/19420862.2018.1556465
- Baron D. 1990. Industrial production of monoclonal antibodies. Naturwissenschaften 77: 465-471. https://doi.org/10.1007/BF01135921
- Bartley A, Macleod A J. 1992. A comparative study of monoclonal antibody yield using batch, continuous or perfusion suspension culture techniques. pp. 376-378.
- Goey C H, Bell D, Kontoravdi C. 2019. CHO cell cultures in shake flasks and bioreactors present different host cell protein profiles in the supernatant. Biochem. Eng. J. 144: 185-192. https://doi.org/10.1016/j.bej.2019.02.006
- Zheng C,Zhuang C, Chen Y, Fu Q, Qian H, Wang Y, et al. 2017. Improved process robustness, product quality and biological efficacy of an anti-CD52 monoclonal antibody upon pH shift in Chinese hamster ovary cell perfusion culture. Process Biochem. 17: 1359-5113.
- Zhao Y, Xing J, Xing JZ, Ang WT, Chen J. 2014. Applications of low-intensity pulsed ultrasound to increase monoclonal antibody production in CHO cells using shake flasks or wavebags. Ultrasonics 54: 1439-1447. https://doi.org/10.1016/j.ultras.2014.04.025
- Ayyildiz-Tamis D, Nalbantsoy A, Elibol M, Gurhan S D. 2014. Effect of operating conditions in production of diagnostic Salmonella Enteritidis O-antigen-specific monoclonal antibody in different bioreactor system. Appl. Biochem. Biotechnol. 172: 224-236. https://doi.org/10.1007/s12010-013-0532-4
- Wang L, Hu H, Yang J, Wang F, Kaisermayer C, Zhou P. 2012. High yield of human monoclonal antibody produced by stably transfected drosophila schneider 2 cells in perfusion culture using wave bioreactor. Mol. Biotechnol. 52: 170-179. https://doi.org/10.1007/s12033-011-9484-5
- Komolpis K, Udomchokmongkol C, Phutong S, Palaga T. 2010. Comparative production of a monoclonal antibody specific for enrofloxacin in a stirred tank bioreactor. J. Ind. Eng. Chem. 16: 567-571. https://doi.org/10.1016/j.jiec.2010.03.018
- Xie L, Wang DI. 1992. High cell density and high monoclonal antibody production through medium design and rational control in a bioreactor. Biotechnol. Bioeng. 51: 725-729. https://doi.org/10.1002/(SICI)1097-0290(19960920)51:6<725::AID-BIT12>3.0.CO;2-C
- Golmakany N, Rasaee MJ, Furouzandeh M, Shojaosadati SA, Kashanian S, Omidfar K. 2005. Continuous production of monoclonal antibody in a packed-bed reactor. Biotechnol. Appl. Biochem. 3: 273-278.
- Yang JD, Angelillo Y, Chaudhry M, Goldenberg C, Goldenberg DM. 2000. Achievement of high cell density and high antibody productivity by a controlled-fed perfusion bioreactor process. Biotechnol. Bioeng. 69: 74-82. https://doi.org/10.1002/(SICI)1097-0290(20000705)69:1<74::AID-BIT9>3.0.CO;2-K
- Lubberstedt M, Muller-Vieira U, Biemel KM, Hoffmann SA, Knospel F, Wonne EC, et al. 2012. Serum free culture of primary human hepatocytes in a miniaturized hollow fiber membrane bioreactor for pharmacological in vitro studies. J. Tissue Eng. Regen. Med. 9: 1017-1026. https://doi.org/10.1002/term.1652
- Meuwl F, Von Stockar U, Kadouri A. 2004. Optimization of the medium perfusion rate in a packed-bed bioreactor charged with CHO cells. Cytotechnology 46: 37-47. https://doi.org/10.1007/s10616-005-2105-z
- Haldanker R, Li D, Saremi Z, Baikalov C, Deshpande R. 2000. Serum-free suspension large scale transient transfection of CHO cells in WAVE bioreactors. Mol. Biotechnol. 34: 191-200. https://doi.org/10.1385/MB:34:2:191
- Manna LA, Febo TD, Armillotta G, Luciani M, Ciarelli A, Salini R, et al. 2015. Production of monoclonal antibodies in serum free media. Monoclon. Antib. Immunodiagn. Immunother. 34: 278-288. https://doi.org/10.1089/mab.2015.0004
- Zhang H, Wang H, Liu M, Zhang T, Zhang J, Wang X, et al. 2013. Rational development of a serum free medium and fed-batch process for a GS-CHO cell line expressing recombinant antibody. Cytotechnology 65: 363-378. https://doi.org/10.1007/s10616-012-9488-4
- Miki H, Takagi M. 2015. Design of serum-free medium for suspension culture of CHO cells on the basis of general commercial media. Cytotechnology 67: 689-697. https://doi.org/10.1007/s10616-014-9778-0
- Hamel JP, Dong H, Tang Y, Ohashi R. 2005. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells. Biotechnol. Prog. 21: 140-147. https://doi.org/10.1021/bp049826l
- Ozturk SS. 1996. Engineering challenges in high density cell culture systems. Cytotechnology 22: 3-16. https://doi.org/10.1007/BF00353919
- Knazek RA, Gullino PM, Kohler PO, Dedrick RL. 1972. Cell culture on artificial capillaries: an approach to tissue growth in vitro. Science 178: 65-66. https://doi.org/10.1126/science.178.4056.65
- Era Jain, Ashok Kumar. 2008. Upstream processes in antibody production: evaluation of critical parameters. Biotechnol. Adv. 26: 46-72. https://doi.org/10.1016/j.biotechadv.2007.09.004
- Kuhn J, Molle K, Brinkmann T, Gotting C, Kleesiek K. 2003. High density tissue- like cultivation of JAR choriocarcinoma cells for the invitro production of human xylosyl transferase. J. Biotechnol. 103: 191-196. https://doi.org/10.1016/S0168-1656(03)00102-0
- Marya IC, Julio AL, Richard JG. 2001. Solving design equation for a hollow fiber bioreactor with arbitrary kinetics. Chem. Eng. J. 84: 445-461. https://doi.org/10.1016/S1385-8947(00)00269-2
- Dhainaut N, Bihoreau N, Meterreau JL, Lirochon J, Vincentelli R, Mignot G. 1992. Continuous production of large amount of monoclonal immunoglobulins in hollow fiber using protein-free medium. Cytotehnology 10: 33-41. https://doi.org/10.1007/BF00376098
- Valdes R, Ibarra N, Gonzalez MM, Alvarez T, Garcia J, Liambias R, et al. 2001. Hep-1 hybridoma growth and antibody production using protein free medium in a hollow fiber bioreactor. Cytotechnology 35: 145-154. https://doi.org/10.1023/A:1017921702775
- Cadwell JJ. 1995. New developments in hollow fiber cell culture. Curr. Pharm. Biotechnol. 6: 397-403. https://doi.org/10.2174/138920105774370580
- Yazaki PJ, Shively L, Clark C, Cheung C, LE W, Szpikowsa B, et al. 2001. Mammalian expression and hollow fiber bioreactor production of recombinant anti-CEA diabody and minibody for clinical applications. J. Immunol. Methods 253: 195-208. https://doi.org/10.1016/S0022-1759(01)00388-X
- Wang G, Zhang W, Jacklin C, Freedman D, Eppstain L, Kadouri A. 1992. Modified CelliGen-packed bed bioreactors for hybridoma cell cultures. Cytotechnology 9: 41-49. https://doi.org/10.1007/BF02521730
- Lu J, Zhang X, Li J, Yu L, Chen E, Zhu D, et al. 2016. A new fluidized bed bioreactor based on diversion-type microcapsule suspension for bioartificial liver systems. PLoS One 11: e0147376. https://doi.org/10.1371/journal.pone.0147376
- Detzel CJ, Van Wie BJ, Ivory CF. 2010. Fluid flow through a high cell density fluidized-bed during centrifugal bioreactor culture. Biotechnol. Prog. 26: 1014-1023.
- Singh V. 1999. Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30: 149-158. https://doi.org/10.1023/A:1008025016272
- Irons SL, Chambers AC, Lissina O, King LA, Posse RD. 2018. Protein production using baculovirus expression system. Curr. Prooc. Protein Sci. 91: 1-22.
- Decarli MC, Dos santos DP, Astray RM, Ventini monterio DC, Calil Jorge SA, Correia D M, et al. 2018. Drosophila S2 cell culture in a wave bioreactor: potential for scaling up the production of the recombinant rabies virus glycoprotein. Appl. Microbiol. Biotechnol. 102: 4773-4783. https://doi.org/10.1007/s00253-018-8962-0
- Bansal V, Roychoudhary PK, Mattiason B, Kumar A. 2006. A recovery of urokinase from integrated mammalian cell culture cryogel bioreactor and purification of enzyme using p-aminobenzamidine affinity chromatography. J. Mol. Recognit. 19: 332-339. https://doi.org/10.1002/jmr.785
- Kumar A, bansal V, Nandakumar KS, Galaev IY, Roychoudhary PK, Holmdahl R, et al. 2006. Integrated bioprocess for the production and isolation of urokinase from animal cell culture using supermacroporous cryogel matrices. Biotechnol. Bioeng. 93: 636-646. https://doi.org/10.1002/bit.20719
- Nilsang S, Nandakumar KS, Galaev IY, Rakshit SK, Holmdahl R, Mattiason B, et al. 2007. Monoclonal antibody production using a new supermacroporous cryogel perfusion reactor. Biotechnol. Prog. 23: 932-939. https://doi.org/10.1021/bp0700399
- Kumar A, Bansal V, Andersson J, Roychoudhary PK, Mattiason B. 2006. Supermacroporous cryogel matrix for integrated protein isolation. Immobilised metal affinity chromatographic purification of urokinase from cell culture broth of human kidney cell line. J. Chromatogr. A 1103: 35-42. https://doi.org/10.1016/j.chroma.2005.08.094
- Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiason B. 2003. Polymeric cryogels are promising materials of biotechnological interest. Trends Biotechnol. 21: 445-451. https://doi.org/10.1016/j.tibtech.2003.08.002
- Xavier Guliherme EP, Olivia JP, Carvalho LM, Brandi IV, Sausa Santos SH, Carvalho G P, et al. 2017. Synthesis of supermacroporous cryogel for bioreactors continuous starch hydrolysis. Electrophoresis 38: 2940-2946. https://doi.org/10.1002/elps.201700208
- Cadwell J, Whitford W. 2011. The potential application of hollow fiber bioreactors to large scale production: a hollow fiber matrix can be used for large scale cell culture and allows for efficient harvest of secreted proteins. Biopharm Int. 24: 21-26.
- Akhondi E, Zamani F, Han Tng K, Leslie G, Krantz WB, Fane A G, et al. 2017. The performance and fouling control of submerged hollow fiber systems: a review. Appl. Sci. 7: 765. https://doi.org/10.3390/app7080765
- Chotteau V, Clinke M, Eolleryd CM, Zhang Y, Lindskog E, Walsh K, et al. 2013. Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactorTM. Part I. effect of the cell density on the process. Biotechnol. Prog. 29: 754-767. https://doi.org/10.1002/btpr.1704
- Portner R. Platas OB, Fassnachtl D, Nehring D, Czermak P, Markl H. 2007. Fixed bed reactors for mammalian cells: design, Performance and scale up. Open Biotechnol. J. 1: 41- 46. https://doi.org/10.2174/1874070700701010041
- Detzel C J, Van wie B J, Ivory C F. 2010. Fluid flow through a High cell density fluidized bed during centrifugal bioreactor culture. Biotechnol. Prog. 26: 1014-1023.
- Kumar A, Jain E. 2016. Supermacroporous Cryogels: Biomedical and Biotechnological applications. pp. 418-439. 1st Ed. Polymer science. India.
- Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A. 2010. Cell culture processes for monoclonal antibody production. MAbs 5: 466-479.
- O'Callaghan PM, James C. 2008. Systems biotechnology of mammalian cell factories. Brief. Funct. Genomic. Proteomic 7: 95-110. https://doi.org/10.1093/bfgp/eln012
- Xu S, Gavin J, Jiang R, Chen H. 2017. Bioreactor productivity and media cost comparison for different intensified cell culture processes.Biotechnol. Prog. 33: 867-878. https://doi.org/10.1002/btpr.2415
- Tapia F, Ramirezza VR, Genzel Y, Reich U. 2016. Bioreactors for high cell density and countinuous multistage cultivations: options for process intensification in a cell culture based viral vaccine production. Appl. Microbiol. Biotechnol. 100: 2121-2132. https://doi.org/10.1007/s00253-015-7267-9
- Hatti-Kau R, Pereira Jr N, Diegel O, Belgrano F S. 2018. Cell immobilization on 3D-printed matrices: a model study on propionic acid fermentation. Bioresour. Technol. 249: 777-782 https://doi.org/10.1016/j.biortech.2017.10.087
- Ali C, Jackson R, Bayrak E F, Wang T, Coufal M, Undey C. 2018. High performance agent-based modeling to simulate mammalian cell culture bioreactor. Comput. Aided Chem. Eng. 44: 1453-1458. https://doi.org/10.1016/B978-0-444-64241-7.50237-8
- Robert F Steinhoff, Daniel J Karst, Fabian Steinebach, Marie R G Kopp, Gregor W Schmidt, Alexander Stettler, et al. 2015. Microarray-based MALDI-TOF mass spectrometry enables monitoring of monoclonal antibody production in batch and perfusion cell cultures. Methods 104: 33-40. https://doi.org/10.1016/j.ymeth.2015.12.011
- Hogiri T, Tamashima H, Nishizawa A, Okamoto M. 2018. Optimization of a pH- shift control strategy for producing monoclonal antibodies in Chinese hamster ovary cell cultures using a pH-dependent dynamic model. J. Biosci. Bioeng. 125: 245-250. https://doi.org/10.1016/j.jbiosc.2017.08.015
- Kishishita S, Katayama S, Kodaira K, Takagi Y, Matsuda H, Okamoto H, et al . 2015. Optimization of chemically defined feed media for monoclonal antibody production in Chinese hamster ovary cells. J. Biosci. Bioeng. 120: 78-84. https://doi.org/10.1016/j.jbiosc.2014.11.022
- Zhang Y, Veronique C. 2015. Observation of Chinese Hamster Ovary Cells retained inside the non-woven fiber matrix of the CellTank bioreactor. Data Brief 5: 586-588. https://doi.org/10.1016/j.dib.2015.10.006
- Kreyer S, Stahn R, Navrath K, Goralczyk V, Zoro B, Goletz S. 2019. A novel scale-down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM). Biotechnol. Prog. 35: 2832.
- Restaino OF, Climini D, Rosa MD, Catapano A, schiraldi C. 2011. High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production. Microb. Cell Fact. 10: 10. https://doi.org/10.1186/1475-2859-10-10
- Bartolo LD, Salerno S, Curcio E, Piscioneri A, Rende M, Morelli S, et al. 2009. Human hepatocyte functions in a crossed hollow fiber membrane bioreactor. Biomaterials 30: 2531-2543. https://doi.org/10.1016/j.biomaterials.2009.01.011
- Wang S, Godfrey S, Radoniqi F, Lin H, Coffman J. 2018.Larger pore size hollow fiber membranes as a solution to the product retention issue in filtration based perfusion bioreactors. Biotechnol. J. 14: e1800137.
- Perez M S, Penaherrera A, Sierra-Rodero M, Vega M, Rosero G, Lerner B, et al. 2015. Evaluation of cell culture in micro fluidic chips for application in monoclonal antibody production. Microelectron. Eng. 158: 126-129. https://doi.org/10.1016/j.mee.2016.03.059
- Jain E, Kumar A. 2013. Disposable polymeric cryogel bioreactor matrix for therapeutic protein production. Nat. Protoc. 8: 821-835. https://doi.org/10.1038/nprot.2013.027
- Bray LJ, Secker C, Murekatete B, Sievers J, Binner M, Welzel PB, et al. 2018. Three-dimensional in vitro hydro- and cryogel-based cell-culture models for the study of breast-cancer metastasis to bone. Cancers 10: 292. https://doi.org/10.3390/cancers10090292
- Zhang G, Song X, Mei J, Wang L,Yu L, Xing MM Q, Qiu X. 2017. A simple 3D cryogel co-culture system used to study the role of CAFs in EMT of MDA-MB-231 cells. RSC Adv. 7: 17208-17216. https://doi.org/10.1039/C6RA28721B
- Jyoti K, Kumar A. 2017. Development of polymer based cryogel matrix for transportation and storage of mammalian cells. Sci. Rep. 7: 41551. https://doi.org/10.1038/srep41551
- Westbrook A, Scharer J, Moo-Young M, Oosterhuis N, Chou CP. 2014. Application of a two-dimensional disposable rocking bioreactor to bacterial cultivation for recombinant protein production. Biochem. Eng. J. 88: 154-161. https://doi.org/10.1016/j.bej.2014.04.011