References
- Abbas, S., Nehdi, M.L. and Saleem, M. A. (2016), "Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges", Int. J. Concrete Struct. Mater., 10(3), 271-295. https://doi.org/10.1007/s40069-016-0157-4.
- ACI Committee 239 (2012), Meeting Minutes, Am. Concr. Institute, Toronto.
- ACI Committee 544 (1982), State of the Art Report of Fiber Reinforced Concrete, Concrete Int., Des. Constr., 4(5), 9-30.
- Al-Manaseer, A.A. and Albert, A.J. (1995), "Measuring the consistency and workablity of superplasticized concrete", ACI Mater. J., 92, 286-290.
- Alsalman, A., Dang, C.N. and Hale, W.M. (2017), "Development of ultra-high performance concrete with locally available materials", Constr. Build. Mater., 133, 135-145. https://doi.org/10.1016/j.conbuildmat.2016.12.040.
- ASTM C138/C138M-17a (2017), Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete, ASTM International, West Conshohocken, PA.
- ASTM C143/C143M-15a (2015), Standard Test Method for Slump of Hydraulic-Cement Concrete, ASTM International, West Conshohocken, PA.
- ASTM C1611/C1611M-18 (2018), Standard Test Method for Slump Flow of Self-Consolidating Concrete, ASTM International, West Conshohocken, PA.
- ASTM C39/C39M-18 (2018), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
- ASTM C469/C469M-14 (2014), Standard Test Method for Static Modulus of Elasticity and Poisson's Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA.
- ASTM C496/C496M-11 (2004), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
- ASTM C78/C78M-18 (2018), Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, PA.
- Azmee, N.M. and Shafiq, N. (2018), "Ultra-high performance concrete: From fundamental to applications", Case Stud. Constr. Mater., 9, e00197. https://doi.org/10.1016/j.cscm.2018.e00197.
- Burroughs, J.F., Shannon, J., Rushing, T.S., Yi, K., Gutierrez, Q.B. and Harrelson, D.W. (2017), "Potential of finely ground limestone powder to benefit ultra-high performance concrete mixtures", Constr. Build. Mater., 141, 335-342. https://doi.org/10.1016/j.conbuildmat.2017.02.073.
- Erdogdu, S., Kandil, U. and Nayir, S. (2019), "Effects of cement dosage and steel fiber ratio on the mechanical properties of reactive powder concrete", Adv. Concrete Constr., 8(2), 139-144. https://doi.org/10.12989/acc.2019.8.2.139.
- Fisher, R.A. (1925), Statistical Methods for Research Workers, Oliver & Boyd, London
- Ghafari, E., Arezoumandi, M., Costa, H. and Julio, E. (2015), "Influence of nano-silica addition on durability of UHPC", Constr. Build. Mater., 94, 181-188. https://doi.org/10.1016/j.conbuildmat.2015.07.009.
- Gosavi1, J.S. and Awari, U.R. (2018), "A review on high-performance concrete", Int. Res. J. Eng. Technol. (IRJET), 5(5), 1965-1968.
- Graybeal, B. (2007), "Compressive behavior of ultra-high performance fiber-reinforced concrete", ACI Mater. J., 104(2), 146-152.
- Graybeal, B. (2014), "Ultra-high-performance concrete connections for precast concrete bridge decks", PCI J., 49(4), 48-62. https://doi.org/10.15554/pcij.09012014.48.62
- Gu, C., Sun, W., Guo, L., Wang, Q., Liu, J., Yang, Y. and Shi, T. (2018), "Investigation of microstructural damage in ultrahigh-performance concrete under freezing-thawing action", Adv. Mater. Sci. Eng., 2018, Article ID 3701682, 9. https://doi.org/10.1155/2018/3701682.
- He, Z.H., Du, S.G. and Chen, D. (2018), "Microstructure of ultra high performance concrete containing lithium slag", J. Hazard. Mater., 5(353), 35-43. https://doi.org/10.1016/j.jhazmat.2018.03.063.
- Hughes, B.P. (1977), "Load-deflection curves for fibre-reinforced concrete beams in flexure", Mag. Concrete Res., 29(101), 199-206. https://doi.org/10.1680/macr.1977.29.101.199.
- Khaloo, A.R. and Kim, N. (1996), "Mechanical properties of normal to high-strength steel fiber-reinforced concrete", Cement Concrete Aggr., 18(2), 92-97. https://doi.org/10.1520/CCA10156J.
- Lai, J., Yang, H., Wang, H. and Zheng, X. (2018), "Properties and modeling of ultra-high-performance concrete subjected to multiple bullet impacts", J. Mater. Civil Eng., 30(10), 04018256. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002462.
- Larrard, F. and Sedran, T. (1994), "Optimization of ultra-high performance concrete by the use of a packing model", Cement Concrete Res., 24, 997-1009. https://doi.org/10.1016/0008-8846(94)90022-1.
- Larrard, F. and Sedran, T. (2002), "Mixture proportioning of high performance concrete", Cement Concrete Res., 32(11), 1699-1704. https://doi.org/10.1016/S0008-8846(02)00861-X.
- Li, P.P., Yu, Q.L. and Brouwers, H.J.H. (2018), "Effect of coarse basalt aggregates on the properties of ultra-high performance concrete (UHPC)", Constr. Build. Mater., 170, 649-659. https://doi.org/10.1016/j.conbuildmat.2018.03.109.
- Metha, P.K. and Monteiro, P.J.M. (2006), Concrete; Microstructure, Properties and Materials, 3rd Edition, McGraw-Hill, New York.
- Mindess, S. and Bentur, A. (1983), "Concrete beams reinforced with conventional steel bars and steel fibres: properties in static loading", Int. J. Cement Compos. Lightw. Concrete, 5(3), 199-202. https://doi.org/10.1016/0262-5075(83)90007-6
- Montgomery, D.C. (2005), Design and Analysis of Experiments, Wiley, New York, NY, USA.
- Mosaberpanah, M.A. and Eren, O. (2018), "CO2-full factorial optimization of an ultra-high performance concrete mix design", Eur. J. Environ. Civil Eng., 22(4), 450-463. https://doi.org/10.1080/19648189.2016.1210030.
- Myers, J.J. (1999), "How to achieve a higher modulus of elasticity", HPC Bridge Views, FHWA, Sponsored, NCBC Co-Sponsored Newsletter.
- Nehdi, M. and Soliman, A.M. (2011), "Early-age properties of concrete: overview of fundamental concepts and state-of-the-art research", Proc. Inst. Civil Eng. Constr. Mater., 164, 57-77. https://doi.org/10.1680/coma.900040.
- Neville, A.M. (1994), Properties of Concrete, Longman: Essex, UK.
- Okamura, H. and Ozawa, K. (1995), "Mix-design for self-compacting concrete", Concrete Lib. JSCE, 25, 107-120. https://doi.org/10.3151/jact.1.5.
- Petersson, O. and Billberg, P. (1996), "A model for selfcompacting concrete", Proc. of the Int. RILEM conf. on production methods and workability of concrete, Paisley, E&FN Spon, London.
- Pyo, S. and Kim, H.K. (2017), "Fresh and hardened properties of ultra-high performance concrete incorporating coal bottom ash and slag powder", Constr. Build. Mater., 131, 459-466. https://doi.org/10.1016/j.conbuildmat.2016.10.109.
- Pyo, S., Alkaysi, M. and El-Tawil, S. (2016), "Crack propagation speed in ultra high performance concrete (UHPC)", Constr. Build. Mater., 114, 109-118. https://doi.org/10.1016/j.conbuildmat.2016.03.148.
- Qu, D., Cai, X. and Chang, W., (2018) "Evaluating the effects of steel fibers on mechanical properties of ultra-high performance concrete using artificial neural networks", Appl. Sci., 8(7), 1120; https://doi.org/10.3390/app8071120.
- Rajkumar, P.R.K., Rahul, M. and Ravichandran, P.T. (2018), "Characteristic study on high performance hybrid fiber reinforced concrete using copper slag fine aggregate", Int. J. Eng. Technol., 7(2.33), 31-35.
- Sharma, R. and Bansal, P.P. (2019), "Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete", Adv. Concrete Constr., 8(1), 21-31. https://doi.org/10.12989/acc.2019.8.1.021
- Shi, C., Wu, Z., Xiao, J., Wang, D., Huang, Z. and Fang, Z. (2015), "A review on ultra high performance concrete: part 1. raw materials and mixture design", Constr. Build. Mater., 101, 741-751. https://doi.org/10.1016/j.conbuildmat.2015.10.088.
- Soliman, N.A. and Tagnit-Hamou, A. (2016), "Development of ultra-high-performance concrete using glass powder-Towards ecofriendly concrete", Constr. Build. Mater., 125, 600-612. https://doi.org/10.1016/j.conbuildmat.2016.08.073.
- Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fiber-reinforced concrete", Constr. Build. Mater., 18, 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027.
- Swamy, R.N. (1976), "The interfacial bond stress in steel fiber cement composites", Cement Concrete Res., 6(5), 641-650. https://doi.org/10.1016/0008-8846(76)90028-4.
- Taguchi, G. (1987), Introduction to Quality Engineering: Designing Quality into Products and Processes, Asian Productivity Organization, Tokyo, Japan.
- Talebinejad, I., Iranmanesh, A., Bassam, S. and Shekarchizadeh, M. (2004), "Optimizing mix proportions of normal weight reactive powder concrete with strengths of 200-350 MPa", Proceedings of the International Symposium on UHPC, Kassel, Germany.
- Tattersall, G.H. (1979), "Concrete: A multi-phase system", Concrete, January.
- Velazco, G., Visalvanich, K. and Shah, S.P. (1980), "Fracture behavior and analysis of fiber reinforced concrete beams", Cement Concrete Res., 10(1), 41-51. https://doi.org/10.1016/0008-8846(80)90050-2.
- Wille, K., Naaman, A. and Montesinos, G. (2011), "Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way", ACI Mater. J., 108(1), 46-54.
- Yu, R., Spiesz, P. and Brouwers, H. (2014), "Mix design and properties assessment of Ultra-high performance fibre reinforced concrete (UHPFRC)", Cement Concrete Res., 56, 29-39. https://doi.org/10.1016/j.cemconres.2013.11.002.
- Zhou, Y., Xi, B., Yu, K., Sui, L. and Xing, F. (2018), "Mechanical properties of hybrid ultra-high performance engineered cementitous composites incorporating steel and polyethylene fibers", Mater., 11, 1448. https://doi.org/10.3390/ma11081448.