참고문헌
- Abbas, S., Kazmi, S.M.S. and Munir, M.J. (2017), "Potential of rice husk ash for mitigating the alkali-silica reaction in mortar bars incorporating reactive aggregates", Constr. Build. Mater., 132, 61-70. https://doi.org/10.1016/j.conbuildmat.2016.11.126.
- Abbas, Y.M. (2018), "Simplex-lattice strength and permeability optimization of concrete incorporating silica fume and natural pozzolana", Constr. Build. Mater., 168, 199-208. https://doi.org/10.1016/j.conbuildmat.2018.02.144.
- Afshinnia, K. and Rangaraju, P.R. (2015), "Efficiency of ternary blends containing fine glass powder in mitigating alkali-silica reaction", Constr. Build. Mater., 100, 234-245. https://doi.org/10.1016/j.conbuildmat.2015.09.043.
- ASTM C 1260 (2014), Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method), Annual Book of ASTM Standards, America.
- ASTM C 1567-13 (2013), Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method), Annual Book of ASTM Standards, America.
- Baingam, L., Nawa, T., Iwatsuki, E. and Awamura, T. (2015), "ASR formation of reactive chert in conducting model experiments at highly alkaline and temperature conditions", Constr. Build. Mater., 95, 820-831. https://doi.org/10.1016/j.conbuildmat.2015.07.179.
- Bektas, F. and Wang, X. (2015), "Statistical mixture design of ternary blends for controlling ASR", Mag. Concrete. Res., 67(2), 63-70. https://doi.org/10.1680/macr.14.00149.
- Bouikni, A., Swamy, R.N. and Bali, A. (2009), "Durability properties of concrete containing 50% and 65% slag", Constr. Build. Mater., 23, 2836-2845. https://doi.org/10.1016/j.conbuildmat.2009.02.040.
- BS EN 196-1 (2016), Methods of Testing Cement-Part 1: Determination of Strength, British Standard Institution, London, United Kingdom.
- Detwiler, R. (1997), "The role of fly ash composition in reducing alkali-silica reaction", PCA R&D Serial No. 2092.
- Diaz-Loya, I., Juenger, M., Seraj, S. and Minkara, R. (2017), "Extending supplementary cementitious material resources: Reclaimed and remediated fly ash and natural pozzolanas", Cement Concrete Compos., 101, 1-8. https://doi.org/10.1016/j.cemconcomp.2017.06.011.
- Feng, N. and Hao, T. (1998), "Mechanism of natural zeolite powder in preventing alkali-silica reaction in concrete", Adv. Cement. Res., 10(3), 101-108. https://doi.org/10.1680/adcr.1998.10.3.101.
- Ghafoori, N. and Islam, M. (2013), "Time Series analysis for prediction of ASR-induced expansions", Constr. Build. Mater., 49, 194-200. https://doi.org/10.1016/j.conbuildmat.2013.08.015.
- Henderson, G.L. (2007), "The use of lithium to prevent or mitigate alkali-silica reaction in concrete pavements and structures", Report, US Department of Transportation, Federal Highway Administration.
- Hu, C., Gautam, B.P. and Panesar, D.K. (2018), "Nanomechanical properties of alkali-silica reaction (ASR) products in concrete measured by nano-indentation", Constr. Build. Mater., 158, 75-83. https://doi.org/10.1016/j.conbuildmat.2017.10.006.
- Kazmi, S.M.S., Patnaikuni, M.J. and Wu, Y.F. (2017), "Pozzolanic reaction of sugarcane bagasse ash and its role in controlling alkali silica reaction", Constr. Build. Mater., 148, 231-240. https://doi.org/10.1016/j.conbuildmat.2017.05.025.
- Mahyar, M., Erdogan, S.T. and Tokyay, M. (2018), "Extension of the chemical index model for estimating Alkali-Silica reaction mitigation efficiency to slags and natural pozzolanas", Constr. Build. Mater., 179, 587-597. https://doi.org/10.1016/j.conbuildmat.2018.05.217.
- Munir, M.J., Kazmi, S.M.S. and Wu, Y.F. (2017), "Efficiency of waste powder in controlling alkali-silica reaction of concrete: A sustainable approach", Constr. Build. Mater., 154, 590-599. https://doi.org/10.1016/j.conbuildmat.2017.08.002.
- Nayir, S., Erdogdu, S. and Kurbetci, S. (2017), "Effectiveness of mineral additives in mitigating alkali-silica reaction in mortar", Comput. Concrete, 20(6), 705-710. http://dx.doi.org/10.12989/cac.2017.20.6.705.
- Neville, A.M. (1997), Properties of Concrete, John Wiley and Sons, New York, USA.
- Nguyen, T.N., Yu, Y., Gowripalan, N. and Sirivivatnanon, V. (2019), "Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network", Comput. Concrete, 24(6), 541-553. https://doi.org/10.12989/cac.2019.24.6.541.
- Nguyen, T.N., Yu, Y., Li J. and Sirivivatnanon, V. (2020), "An optimised support vector machine model for elastic modulus prediction of concrete subject to Alkali Silica reaction", Proc. 25th Australasian Conf. Mech. Struct. Mater., Singapore. https://doi.org/1007/978-981-13-7603-0_85.
- Ozbay, E., Erdemir, M. and Durmus, H.I. (2016), "Utilization and efficiency of ground granulated blast furnace slag on concrete properties- A review", Constr. Build. Mater., 105, 423-434. https://doi.org/10.1016/j.conbuildmat.2015.12.153.
- Rajabipour, F., Giannini, E., Dunant, C., Ideker, J.H. and Thomas, M.D.A. (2015), "Alkali-Silica reaction: Current understanding of the reaction mechanisms and knowledge of gaps", Cement Concrete Res., 76, 130-146. https://doi.org/10.1016/j.cemconres.2015.05.024.
- Ramlochan, T., Thomas, M. and Gruber, K.A. (2000), "The effect of metakaolin on alkali-silica reaction in concrete", Cement Concrete Res., 30(3), 339-344. https://doi.org/10.1016/S0008-8846(99)00261-6.
- Shafaatian, S.M.H., Akhavan, A., Maraghecni, H. and Rajabiour, F. (2013), "How does fly ash mitigate alkali-silica reaction in accelerated mortar bar test?", Cement Concrete Compos., 37, 143-153. https://doi.org/10.1016/j.cemconcomp.2012.11.004.
- Shehata, M.H. and Thomas, M.D.A. (2010), "The role of alkali content of Portland cement on the expansion of concrete prisms containing reactive aggregates and supplementary cementing materials", Cement Concrete Res., 40, 569-574. https://doi.org/10.1016/j.cemconres.2009.08.009.
- Shon, C.S. and Kim, Y.S. (2013), "Evaluation of West Texas natural zeolite as an alternative of ASTM Class F fly ash", Constr. Build. Mater., 47, 389-396. https://doi.org/10.1016/j.conbuildmat.2013.04.041.
- Stanton, T.E. (1940), "Expansion of concrete through reaction between cement and aggregate", Proc. Am. Soc. Civil Eng., 66(10), 1781-1811.
- Swamy, R.N. (2002), The Alkali-Silica Reaction in Concrete, Van Nostrand Reinhold, New York.
- Thomas, M., Dunster, A., Nixon, P. and Blackwell, B. (2011), "Effect of fly ash on the expansion of concrete due to alkali-silica reaction-Exposure site studies", Cement and Concrete compos., 33, 359-367. https://doi.org/10.1016/j.cemconcomp.2010.11.006.
- TS 25 (2008), Natural Pozzolana (Trass) for use in Cement and Concrete-Definitions, Requirements and Conformity Criteria, Turkish standards, Ankara (in Turkish).
- Turk, K., Kina, C. and Bagdiken, M. (2017), "Use of binary and ternary cementitious blends of F-Class fly-ash and limestone powder to mitigate alkali-silica reaction risk", Constr. Build. Mater., 151, 422-427. https://doi.org/10.1016/j.conbuildmat.2017.06.075.
- Ustabas, I. and Kaya, A. (2018), "Comparing the pozzolanic activity properties of obsidian to those of fly ash and blast furnace slag", Constr. Build. Mater., 164, 297-307. https://doi.org/10.1016/j.conbuildmat.2017.12.185.
- Yu, L., Zhou, S. and Deng, W. (2015), "Properties and pozzolanic reaction degree of tuff in cement-based composite", Adv. Concrete Constr., 3(1), 71-90. http://dx.doi.org/10.12989/acc.2015.3.1.071.
- Yu, Y., Nguyen, T.N., Li, J., Sanchez, L.F.M. and Nguyen, A. (2021), "Predicting elastic modulus degradation of alkali silica reaction affected concrete using soft computing techniques: A comparative study", Constr. Build. Mater., 274, 122024. https://doi.org/10.1016/j.conbuildmat.2020.122024.
- Yu, Y., Zhand, C., Gu, X. and Cui, Y. (2019), "Expansion prediction of alkali aggregate reactivity-affected concrete structures using a hybrid soft computing method", Neur. Comput. Appl., 31, 8641-8660. https://doi.org/10.1007/s00521-018-3679-7.
- Zahira, S.N. and Aissa, A. (2015), "Modelling the alkali-aggregate reaction expansion in concrete", Comput. Concrete, 16(1), 37-48. https://doi.org/10.12989/cac.2015.16.1.037.
- Zheng, K. (2016), "Pozzolanic reaction of glass powder and its role in controlling alkali-silica reaction", Cement. Concrete. Compos., 67, 30-38. https://doi.org/10.1016/j.cemconcomp.2015.12.008.
피인용 문헌
- Altered Volcanic Tuffs from Los Frailes Caldera. A Study of Their Pozzolanic Properties vol.26, pp.17, 2021, https://doi.org/10.3390/molecules26175348