DOI QR코드

DOI QR Code

비행체의 특징을 고려한 공중중계 무인기 다중빔 안테나 운용 방안

A Study on the Operation of Multi-Beam Antenna for Airborne Relay UAV considering the Characteristics of Aircraft

  • 박상준 (육군사관학교 전자공학과) ;
  • 이원우 (육군사관학교 전자공학과) ;
  • 김용철 (육군사관학교 전자공학과) ;
  • 김준섭 (육군사관학교 전자공학과) ;
  • 조오현 (충북대학교 소프트웨어학과)
  • Park, Sangjun (Department of Electrical Engineering, Korea Military Academy) ;
  • Lee, Wonwoo (Department of Electrical Engineering, Korea Military Academy) ;
  • Kim, Yongchul (Department of Electrical Engineering, Korea Military Academy) ;
  • Kim, Junseob (Department of Electrical Engineering, Korea Military Academy) ;
  • Jo, Ohyun (Department of Computer Science, Chungbuk National University)
  • 투고 : 2021.03.15
  • 심사 : 2021.04.20
  • 발행 : 2021.04.28

초록

4차 산업혁명 시대의 미래 전장은 초연결, 고속기동화된 무기체계로 다영역작전을 수행할 것이다. 이러한 미래전 양상의 변화에 대비하기 위해 우리군은 다양한 유·무인 무기체계를 개발하고 이들의 기동간 통신 지원이 가능한 다계층 전술네트워크 구성을 위하여 노력하고 있다. 그러나 현재의 전술네트워크는 단일 계층에서 단일빔 안테나를 활용한 1:1 고속링크 또는 무지향성 안테나를 활용한 1:N 저속링크를 운용하고 있어 기동간 통신 지원이 제한된다. 즉 미래전 대비를 위한 다계층 전술네트워크를 효율적으로 구성하기 위해서 다중빔 안테나의 운용이 필요하다. 특히 공중계층의 공중중계 무인기는 비행체 특징에 따라 다중빔 안테나의 운용 방법이 달라진다. 따라서 본 논문에서는 다계층 전술네트워크의 효율적인 운용을 위하여 공중계층에 필요한 다중빔 안테나 운용 시나리오와 고려 요소, 회전익과 고정익 비행체의 특징을 살펴보고 이를 토대로 다중빔 안테나의 공중중계 무인기 설치 위치 및 운용 방안을 회전익과 고정익 비행체로 구분하여 제시한다.

In the era of the Fourth Industrial Revolution, the future battlefield will carry out multi-area operations with hyper-connected, high-speed and mobile systems. In order to prepare for changes in the future, the Korean military intends to develop various weapons systems and form a multi-layer tactical network to support On The Move communication. However, current tactical networks are limited in support of On The Move communications. In other words, the operation of multi-beam antennas is necessary to efficiently construct a multi-layer tactical network in future warfare. Therefore, in this paper, we look at the need for multi-beam antennas through the operational scenario of a multi-layer tactical network. In addition, based on development consideration factors, features of rotary-wing and fixed-wing aircraft, we present the location and operation of airborne relay drone installations of multi-beam antennas.

키워드

참고문헌

  1. C. Lee, M. Jung & S. Park. (2020). Future Warfare for Hyper Connected Era. The Journal of th Convergence on Culture Technology, 6(3), 99-103. DOI : 10.17703/JCCT.2020.6.3.99
  2. S. H. Kim, S. W. Chey & S. P. Hong. (2019). Development Direction of Defense Weapon System for the 4th Industrial Revolution. Journal of The Korean Society of Industry Convergence, 22(2), 71-79. DOI : 10.21289/KSIC.2019.22.2.71
  3. S. Park, H. H. Park, H. Ahn & Y. Kim. (2020). Operational Concept and Effectiveness for Aerial Tactical Network in TICN, The Journal of Korean Institute of Communications and Information Sciences, 45(2), 458-466. DOI : 10.7840/kics.2020.45.2.458
  4. G. Lee et al. (2020). Airborne Relay Network Technology Trend Analysis and Evolution Strategy, The Journal of Korean Institute of Next Generation Computing, 16(5), 73-90.
  5. H. Baek & J. Lim. (2018). Design of Future UAV-Relay Tactical Data Link for Reliable UAV Control and Situational Awareness, IEEE Communications Magazine, 56(10), 144-150. DOI : 10.1109/MCOM.2018.1700259
  6. J. Chil, G. Lee, S. Lee & B. Roh. (2018). Operation Scheme of Aerial Relay Networks for Improving Degree of Situation Awareness in Future Tactical Networks, Journal of Information Technology and Architecture, 15(4), 509-520. https://doi.org/10.22865/JITA.2018.15.4.509
  7. Y. H. Cho. (2019). Phased Array Antenna Technology for Hyper-connected Future Warfare, Korea Institute of Information Technology Magazine, 17(1), 11-20.
  8. S. C. Yeo, B. W. Kang, K. H. Bae & C. B. Yoon (2020). Study on Data-Link Antenna System for UAV, Journal of the Korean Institute of Electronic Communication Sciences, 15(1), 9-14. DOI : 10.13067/JKIECS.2020.15.1.9
  9. J. S. Park et al. (2020). Coverage Prediction for Aerial Relay systems based on the Common Data Link using ITU Models, Journal of the Korean Institute of Electronic Communication Sciences, 15(1), 21-30. DOI : 10.13067/JKIECS.2020.15.1.21
  10. J. H. Byun et al. (2021). Learning-Backoff based Wireless Channel Access for Tactical Airborne Networks, Journal of Convergence for Information Technology, 11(1), 12-19. DOI : 10.22156/CS4SMB.2021.11.01.012
  11. K. Kwak et al. (2014). Airborne Network Evaluation: Challenges and High Fidelity Emuation Solution, IEEE Communications Magazine, 52(10), 30-36. DOI : 10.1109/MCOM.2014.6917398
  12. Joint Chiefs of Staff. (2015). Joint Concept for Command and Control of the Joint Aerial layer Network. Washington D. C.
  13. Wikipedia. (15. Feb. 2021). Battlefield Airborne Communications Node. https://en.wikipedia.org/wiki/Battlefield_Airborne_Communications_Node#BACN_as_a_concept
  14. M. A. Khan, I. M. Qureshi & F. Khanzada, (2019). A Hybrid Communication Scheme for Efficent and Low-Cost Deployment of Future Ad-Hoc Network(FANET), drones, 1-20. DOI : 10.3390/drones3010016
  15. X. Li, F. Hu, J. Qi & S. Kumar (2019). Systematic Medium Access Control in Hierarchical Airborne Networks With Multibeam and Single-beam Antennas, IEEE Transactions on Aerospace and Electronic Systems, 55(2), 706-717. DOI : 10.1109/TAES.2018.2864468
  16. L. Zhang, L. Hu, et al. (2020). Enhanced OLSR routing for airborne networks with multi-beam directional antennas, Ad Hoc Networks, 102, 1-13. DOI : 10.1016/j.adhoc.2020.102116
  17. B. J. Ahn & S. Y. Jo. (2019). A Study on the Development of Army TIGER System 4.0 Environmental Command and Control Communication System in Korea Army, Defense and Technology, (479), 76-83.
  18. H. Han, (2020). Analysis of the Status of Basic Industries in Military Drone, The Journal of the Convergence on Culture Technology, 6(4), 493-498. DOI : 10.17703/JCCT.2020.6.4.493
  19. Wikipedia. (5. Mar. 2021). Boeing AH-64 Apache. https://en.wikipedia.org/wiki/Boeing_AH-64_Apache
  20. Wikipedia. (20. Dec. 2020). Northrop Grumman RQ-4 Global Hawk. https://en.wikipedia.org/wiki/Northrop_Grumman_RQ-4_Global_Hawk
  21. Wikipedia. (2. Jan. 2021). Lapse rate. https://en.wikipedia.org/wiki/Lapse_rate
  22. Wikipedia. (9. Mar. 2021). KAI KUH-1 Surion. https://en.wikipedia.org/wiki/KAI_KUH-1_Surion
  23. Wikipedia. (18. Feb. 2021). IAI Heron. https://en.wikipedia.org/wiki/IAI_Heron