DOI QR코드

DOI QR Code

4차 산업혁명과 스마트 팩토리 관련 기술의 수용의도 및 수용행동 영향요인에 대한 연구

A Study on the Factors Influencing Acceptance Intention and Acceptance Behavior of Technologies Related to the 4th Industrial Revolution and Smart Factory

  • Lee, Yong-Gyu (Department of General Education, Gimcheon University)
  • 투고 : 2021.03.05
  • 심사 : 2021.04.20
  • 발행 : 2021.04.28

초록

본 연구의 목적은 확장된 UTAUT를 활용하여 4차 산업혁명 및 스마트 팩토리 관련 기술의 수용의도와 수용행동에 영향을 미칠 수 있는 영향요인을 연구하는 것이다. 이를 통해 어떠한 영향요인들이 관련 기술의 도입과 수용에 영향을 미치는가를 파악함으로써 제조 기업들의 4차 산업혁명에 대한 대응 및 스마트 팩토리 관련 기술 수용을 위한 전략을 도출하는 것이다. 다양한 제조 기업체들에 대하여 설문조사를 시행하였으며, 167부를 연구에 활용하였다. 연구가설의 검정결과 성과기대, 사회적 영향, 촉진조건, 네트워크 효과, 혁신성은 수용의도에 긍정적이고 유의한 영향을 미친다. 그러나 노력기대는 수용의도에 긍정적인 영향을 미치지만 유의하지 않았다. 수용의도는 수용행동에 긍정적이고 유의한 영향을 미친다. 따라서 4차 산업혁명 대응과 스마트 팩토리 관련 기술의 도입 및 수용과정에서 제조 기업들이 제고하여야 하는 요인들을 명확하게 제시하였다.

The purpose of this study is to study the influencing factors that can affect the acceptance intention and acceptance behavior of the 4th Industrial Revolution and smart factory-related technologies by using the expanded UTAUT. Through this, by grasping which influencing factors affect the introduction and acceptance of related technologies, it is to derive strategies for responding to the fourth industrial revolution by manufacturing companies and accepting smart factory related technologies. A survey was conducted on various manufacturing companies, and 167 copies were used for research. As a result of the testing of research hypotheses, performance expectation, social impact, promotion conditions, network effect, and innovation have a positive (+) significant effect on acceptance intention. However, expectation of effort had a positive (+) effect on acceptance intention, but was not significant. Acceptance intention was tested to have a positive (+) significant effect on acceptance behavior. Therefore, factors that should be improved by individual manufacturing companies in the process of responding to the 4th industrial revolution and the introduction and acceptance of smart factory-related technologies are clearly presented.

키워드

참고문헌

  1. H. Kim, H. Huh, J. W. Kang & J. Boo. (2019). A Study on Factors Influencing the Introduction of Smart Factory : Focusing on Small and Medium-sized Enterprises in Korea. Journal of Society of Korea Industrial and Systems Engineering, 42(3), 252-261. DOI : 10.11627/jkise.2019.42.3.252
  2. J. K. Bae. (2018). A Study on the Determinant Factors of Innovation Resistance and Innovation Acceptance on Internet Primary Bank Services : Combining the Theories of Innovation Diffusion and Innovation Resistance. The e-Business Studies, 19(2), 91-104. DOI : 10.20462/TeBS.2018.4.19.2.91
  3. W. J. Jang, S. I. Cho, S. S. Kim & G. Y. Gim. (2018). A Study on the Implementation of Big Data Infrastructure in Smart Factory. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities and Sociology, 8(10), 11-23. DOI : 10.21742/AJMAHS.2018.10.07
  4. Korea Smart Manufacturing Office. (2020). Smart Factory in Korea. https://smart-factory.kr
  5. Ministry of SMEs and Startups. (2020). Statistics(Online). https://www.mss.go.kr
  6. J. R. Kim & S. J. Lee. (2020). Factors Affecting Technology Acceptance of Smart Factory. Journal of Information Technology Applications & Management, 27(1), 75-95. DOI : 10.21219/jitam.2020.27.1.075
  7. V. Venkatesh, M. G. Morris, G. B. Davis & F. D. Davis. (2003). User Acceptance of Information Technology: Toward A Unified View. MIS Quarterly, 27(3), 425-478. DOI : 10.2307/30036540
  8. V. Venkatesh, J. Y. L. Thong & X. Xu. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
  9. V. Venkatesh, J. Y. L. Thong & X. Xu. (2016). Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. Journal of the Association for Information Systems, 17(5), 328-376. DOI : 10.17705/1jais.00428
  10. K. D. Kim & T. W. Nam. (2019). Public Officials' Acceptance of Technology and Innovation Resistance of the Fourth Industrial Revolution: Using PLS-SEM. Korean Society for Policy Studies Spring Academic Papers, 1-23.
  11. K. W. Kim. (2017). Factors Influencing the IoT Technology Acceptance and Policy Implication of SMEs. Legislation and Policy Studies, 9(3), 341-362. DOI : 10.22809/nars.2017.9.3.014
  12. C. H. Jung & S. H. Nam. (2014). Cloud Computing Acceptance at Individual Level Based on Extended UTAUT. Journal of Digital Convergence, 12(1), 287-294. DOI : 10.14400/JDPM.2014.12.1.287
  13. S. H. Jeon, N. R. Park & C. C. Lee. (2011). Study on the Factors Affecting the Intention to Adopt Public Cloud Computing Service. Entrue Journal of Information Technology, 10(2), 97-112.
  14. S. W. Lee & H. S. Lee. (2014). A Study on an Integrative Model for Big Data System Adoption : Based on TOE, DOI and UTAUT. Journal of Information Technology Applications & Management, 21(4), 463-483. DOI : 10.21219/jitam.2014.21.4_spc.463
  15. B. G. Chung & H. L. Dong. (2019). Influential Factors on Technology Acceptance of Augmented Reality(AR). Asia-Pacific Journal of Business and Venturing, 14(3), 153-168.
  16. J. H. Oh, J. H. Seo & J. D. Kim. (2019). The Effect of Both Employees' Attitude toward Technology Acceptance and Ease of Technology Use on Smart Factory Technology Introduction Level and Manufacturing Performance. Journal of Information Technology Applications & Management, 26(2), 13-26. DOI : 10.21219/jitam.2019.26.2.013
  17. F. D. Davis. (1985). A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results. Doctoral Dissertation. Massachusetts Institute of Technology, Massachusetts Ave, Cambridge.
  18. O. J. Kwon. (2010). An Empirical Study on Potential Smartphone Users. Internet and Information Security, 1(1), 55-83.
  19. S. J. Choi & Y. S. Kang. (2016). Consumers' Intentions for the Usage of Mobile Payments: Extending UTAUT with Innovativeness, Trust and Network Effect. Korean Telecommunications Policy Review, 23(4), 29-52.
  20. J. C. Oh. (2015). A Comparative Study on the Purchase of Mobile Application in Korea and China : Based on the UTAUT. The e-Business Studies, 16(6), 43-63. https://doi.org/10.15719/geba.16.6.201512.43
  21. J. W. Lee & E. H. Kim. (2015). Impacts of Small and Medium Enterprises' Recognition of Social Media on Their Behavioral Intention and Use Behavior. Journal of Information Technology Services, 14(1), 195-215. DOI : 10.9716/KITS.2015.14.1.195
  22. H. G. Lee & M. S. Han. (2019). An Empirical Study on the Consumer Acceptance of Internet Primary Bank : The Application of UTAUT Model. The Journal of Business Education, 33(1), 59-87. https://doi.org/10.34274/krabe.2019.33.1.003
  23. F. D. Davis, R. P. Bagozzi & P. R. Warshaw. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science. 35(8), 982-1003. DOI : 10.1287/mnsc.35.8.982
  24. E. M. Rogers. (2003). Diffusion of Innovations, 5th Edition. New York, Free Press.
  25. G. C. Moore & I. Benbasat. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192-222. DOI : 10.1287/isre.2.3.192
  26. R. L. Thompson, C. A. Higgins & J. M. Howell. (1991). Personal Computing: Toward a Conceptual Model of Utilization. MIS Quarterly, 15(1), 125-143. DOI : 10.2307/249443
  27. D. R. Compeau & C. A. Higgins. (1991). Social Cognitive Theory Perspective on Individual Reactions to Computing Technology. International Conference on Information Systems(ICIS), 187-198.
  28. F. D. Davis. (1989). Perceived Usefulness Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-339. DOI : 10.2307/249008
  29. I. Ajzen. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Process, 50(2), 179-211. DOI : 10.1016/0749-5978(91)90020-T
  30. J. M. Lee. (2005). Convergence of Information and Communication Media and Changes in Selection and Use Factors: Focusing on Internet and Mobile. Korean Academic Information.
  31. H. Hartwick & H. Barki. (1994). Explaining the Role of User Participation in Information Systems Use. Management Science, 40(4), 440-465. DOI : 10.1287/mnsc.40.4.440
  32. C. G. Kim & S. Y. Rho. (2008). Public Administrators' Acceptance of the Practices of Digital Democracy : A Model on the Utilization of Online Policy Forums in South Korea. The Korean Governance Review, 15(2), 21-47. DOI : 10.17089/kgr.2008.15.2.002
  33. M. Fishbein & I. Ajzen (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research. Addison-Wesley Series in Social Psychology.
  34. S. J. Jeong. (2019). The Effect of Marketing Factors of Fashion Service Applying 4th Industrial Technology on Technology Acceptance and Intention to Use: Moderation Effect of Innovation. Doctoral Dissertation. Sungshin Women's University.
  35. Z. J. Sun. (2014). Factors Affecting on Users' Intention in using Social Commerce and Online Shopping. The Journal of the Korea Contents Association, 14(3), 352-360. DOI : 10.5392/JKCA.2014.14.03.352
  36. S. H. Kang & H. K. Kim. (2016). A Study on the User's Acceptance and Use of Easy Payment Service - Focused on the Moderating Effect of Innovation Resistance -. Management & Information Systems Review, 35(2), 167-183. DOI : 10.29214/damis.2016.35.2.010
  37. M. L. Katz & C. Shapiro. (1994), Systems Competition and Network Effects. Journal of Economic Perspectives, 8(2), 93-115. DOI : 10.1257/jep.8.2.93
  38. S. H. Kim. (2013). Highteck Marketing. Parkyoungsa.
  39. J. S. Hyun & J. S. Hyun. (2000). A Structural Model of Network Externalities and Switching Costs in High Technology Markets : Consumer Perspective. Korean Management Review, 29(1), 63-87.
  40. R. Agarwal & E. Karahanna. (2000). Time Flies When You're Having Fun: Cognitive Absorption and Beliefs about Information Technology Usage. MIS Quarterly, 24(4), 665-694. DOI : 10.2307/3250951
  41. R. Agarwal & J. Prasad. (1997). The Role of Innovation Characteristics and Perceived Voluntariness in the Acceptance of Information Technologies. Decision Science, 28(3), 557-582. DOI : 10.1111/j.1540-5915.1997.tb01322.x
  42. E. J. Lee, J. H. Lee, M. H. Cho, Y. J. Sung & S. J. M. Choi. (2018). The Effect of Innovativeness and Self-Regulatory Focus on the Use of Internet of Things. The Korean Journal of Consumer and Advertising Psychology, 19(1), 67-91. DOI : 10.21074/kjlcap.2018.19.1.67
  43. J. Lu, C, Lin, C. S. Yu & K. Wang. (2008). Determinants of Accepting Wireless Mobile Data Service in China. Information & Management, 45(1), 52-64. DOI : 10.1016/j.im.2007.11.002
  44. S. H. Kang. (2016). A Study on the User's Acceptance and Use of Easy Payment Service based on UTAUT : Focused on the Moderating Effect of Innovation Resistance. Doctoral Dissertation. Pukyong National University.
  45. L. S. Kang. (2004). A Study on The Company Strategy under Network Effect in Electronic Commerce Market. Korea Journal of Business Administration, 46, 2121-2138.
  46. C. Shapiro. (1999). Exclusivity in network industries. George Maon Law Review. 7(3), 673-683.
  47. I. K. Park & D. H. Shin. (2010). Using the Uses and Gratifications Theory to Understand the Usage and the Gratifications of Smartphones. Journal of Communication Science, 10(4), 192-225.
  48. J. M. Lee, S. Park & J. Y. Rha. (2017). Consumers' Resistance and Intention to Adopt Smartwatch: Focusing on Benefit-Cost Perception. Journal of Consumer Studies, 28(2), 111-132. https://doi.org/10.35736/jcs.28.2.6
  49. O. J. Kwon. (2010). A Study on the Acceptance of Smartphones Applying the Information Technology Integration Theory. Korean Society for Management Information Systems Autumn Conference, 180-187.
  50. C. Kim, M. Mirusmonov & I. Lee. (2010), An Empirical Examination of Factors Influencing the Intention to Use Mobile Payment. Computers in Human Behavior, 26(3), 310-322. DOI : 10.1016/j.chb.2009.10.013
  51. V. Venkatesh & F. D. Davis. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science. 46(2), 186-204. DOI : 10.1287/mnsc.46.2.186.11926
  52. J. F. Hair, G. T. M. Hult, C. M. Ringle & M. Sarstedt. (2014). A Primer on Partial Least Squares Structural Equation Modeling(PLS-SEM), CA: Sage Publication.
  53. M. H. Hur. (2014). SPSS Statistics Data Validation, Neural Network and PLS Regression. Data Solution.
  54. H. S. Lee & J. H. Lim. (2019). SPSS New UI Manual. Jiphyunjae.
  55. J. Henseler, C. M. Ringle & R. R. Sinkovics(2009). The Use of Partial Least Squares Path Modeling in International Marketing. In R. R. Sinkovics & P. N. Ghauri(eds) New Challenges to International Marketing. Emerald Group Publishing Limited, 277-319.
  56. C. Fornell & D. F. Larcker. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research. 18(1), 39-50. DOI : 10.2307/3151312
  57. H. G. Kim. (2019). An Empirical Study on Continuous Use Intention and Switching Intention of the Smart Factory, Journal of the Korea Industrial Information Systems Research, 24(2), 65-80. DOI : 10.9723/jksiis.2019.24.2.065
  58. B. R. Bae. (2014). Amos 21. Chungram.
  59. K. H. Kang. (2006). Technological Innovation and Employment. Economic Analysis, 12(1), 53-74.