DOI QR코드

DOI QR Code

Risk Factors of Predicting Intensive Care unit Transfer in Deteriorating Ward Patients

병동 급성악화 환자의 중환자실 전동 위험요인 분석

  • Lee, Ju-Ry (Department of Nursing, Geoje University)
  • Received : 2021.03.14
  • Accepted : 2021.04.20
  • Published : 2021.04.28

Abstract

Purpose: When a patient with acute deterioration occurs in a ward, the decision to transfer to intensive care unit (ICU) is critical to improve the patient's outcomes. However, when available ICU resources limited, it is difficult to determine which of the deteriorating ward patients to transfer to the ICU. Therefore the purpose of this study was to identify risk factors in predicting deteriorating ward patients transferred to intensive care unit (ICU). Methods: We reviewed retrospectively clinical data of 2,945 deteriorating ward patients who referred medical emergency team. Data were analyzed with multivariate logistic regression. Results: The solid cancer that diagnosed at hospitalization (odds ratio[OR] 0.39; 95% confidence interval [CI] 0.32-0.47), when the cause of deterioration was respiratory problem (1.51; 95% CI 1.17-1.95), high MEWS (1.22; 1.17-1.28) and SpO2/FiO2 score (2.41; 2.23-2.60) were predictive of ICU transfer. Conclusion: These findings suggest that early prediction and treatment of patients with high risk of ICU transfer may improve the prognosis of patients.

목적: 병동에서 급성악화 환자가 발생할 때 환자에게 집중치료가 필요한지 여부에 대한 결정은 환자의 예후를 향상시키기 위해서는 매우 중요하나, 특히 사용 가능한 ICU 자원이 제한적일 때는 ICU 전동 여부를 결정하기에는 어려움이 있다. 따라서 본 연구는 일반병동 급성 악화 환자를 대상으로 중환자실 전동 위험요인을 확인하고자 한다. 연구방법: 후향적 조사연구로서 대상자는 일 상급종합병원 일반병동에 입원한 18세 이상의 성인 환자 중 악화상태를 보여 신속대응팀에 의뢰된 환자 2,945명을 대상으로 하였다. 중환자실 전동 위험요인을 파악하기 위해 다변량 로지스틱 회귀분석을 시행하였다. 연구결과: 다변량 로지스틱 회귀분석 결과 입원시 고형암을 진단받은 경우 (odds ratio [OR] 0.39, 95% CI 0.32-0.47), 악화원인이 호흡문제인 경우 (OR 1.51, 95% CI 1.17-1.95), MEWS (OR 1.22, 95% CI 1.17-1.28)와 SpO2/FiO2 score (OR 2.41, 95% CI 2.23-2.60)가 중환자실 전동 위험요인으로 나타났다. 결론: 본 연구 결과는 중환자실 전동 위험이 높은 환자의 조기 예측을 가능하게 하여 환자의 예후를 향상시키는데 도움이 될 것으로 사료된다.

Keywords

References

  1. M. A. DeVita et al. (2004). Use of medical emergency team responses to reduce hospital cardiopulmonary arrests. Quality & safety in health care, 13(4), 251-254. DOI: 10.1136/qshc.2003.006585
  2. J. R. Lee & H. R. Choi. (2014). Validation of a Modified Early Warning Score to Predict ICU Transfer for Patients with Severe Sepsis or Septic Shock on General Wards. Journal of Korean Academy of Nursing, 44(2), 219-227. DOI: 10.4040/jkan.2014.44.2.219
  3. J. W. Huh et al. (2014). Activation of a medical emergency team using an electronic medical recording-based screening system. Critical care medicine, 42(4), 801-808. DOI: 10.1097/CCM.0000000000000031
  4. R. Morgan, F. Williams & M. Wright. (1997). An early warning scoring system for detecting developing critical illness. Clin Intensive Care, 8(2), 100.
  5. G. B. Smith, D. R. Prytherch, P. E. Schmidt & P. I. Featherstone. (2007). Review and performance evaluation of aggregate weighted 'track and trigger' systems. Resuscitation, 77(2), 170-179. DOI:10.1016/j.resuscitation.2007.12.004
  6. C. P. Subbe, M. Kruger, P. Rutherford & L. Gemmel. (2001). Validation of a modified early warning score in medical admissions. QJM : monthly journal of the Association of Physicians, 94(10), 521-526. DOI: 10.1093/qjmed/94.10.521
  7. S. Gerry et al. (2020). Early warning scores for detecting deterioration in adult hospital patients: systematic review and critical appraisal of methodology. Brithsh medical journal, 369, m1501-m1501. DOI: 10.1136/bmj.m1501
  8. M. B. Smith et al. (2014). Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. Annals of the American Thoracic Society, 11(9), 1454-1465. DOI: 10.1513/AnnalsATS.201403-102OC
  9. N. Alam et al. (2014). The impact of the use of the Early Warning Score (EWS) on patient outcomes: A systematic review. Resuscitation, 85(5), 587-594. DOI: 10.1016/j.resuscitation.2014.01.013
  10. S. Forster, G. Housley, T. M. McKeever & D. E. Shaw. (2018). Investigating the discriminative value of Early Warning Scores in patients with respiratory disease using a retrospective cohort analysis of admissions to Nottingham University Hospitals Trust over a 2-year period. Brithsh medical journal open, 8(7), e020269-e020269. DOI: 10.1136/bmjopen-2017-020269
  11. J. W. Yoo et al. (2015). A combination of early warning score and lactate to predict intensive care unit transfer of inpatients with severe sepsis/septic shock. The Korean journal of internal medicine, 30(4), 471-477. DOI: 10.3904/kjim.2015.30.4.471
  12. J. R. Lee & H. R. Choi. (2014). Analysis of risk factors to predict intensive care unit transfer in medical in-patients. Journal of Korean Biological Nursing Science, 16(4), 259-266. DOI: 10.7586/jkbns.2014.16.4.259
  13. D. Viglino, E. L'her, F. Maltais, M. Maignan, & F. Lellouche. (2020). Evaluation of a new respiratory monitoring tool "Early Warning ScoreO2" for patients admitted at the emergency department with dyspnea. Resuscitation, 148, 59-65. DOI: 10.1016/j.resuscitation.2020.01.004
  14. W. G. Kwack et al. (2018). Evaluation of the SpO2/FiO2 ratio as a predictor of intensive care unit transfers in respiratory ward patients for whom the rapid response system has been activated. PloS one, 13(7), e0201632-e0201632. DOI: 10.1371/journal.pone.0201632
  15. J. R. Lee et al. (2020). Derivation and validation of modified early warning score plus SpO2/FiO2 score for predicting acute deterioration of patients with hematological malignancies. The Korean journal of internal medicine, 35(6), 1477-1488. DOI: 10.3904/kjim.2018.438
  16. P. Catoire et al. (2021). Assessment of the SpO2/FiO2 ratio as a tool for hypoxemia screening in the emergency department. The American journal of emergency medicine, 44, 116-120. DOI: 10.1016/j.ajem.2021.01.092
  17. J. A. Hanley & B. J. McNeil. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36. DOI: 10.1148/radiology.143.1.7063747
  18. B. H. Cuthbertson, M. Boroujerdi, L. McKie, L. Aucott & G. Prescott. (2007). Can physiological variables and early warning scoring systems allow early recognition of the deteriorating surgical patient? Critical care medicine, 35(2), 402-409. DOI: 10.1097/01.CCM.0000254826.10520.87
  19. M. Odell, C. Victor & Oliver, D. (2009). Nurses' role in detecting deterioration in ward patients: systematic literature review. Journal of advanced nursing, 65(10), 1992-2006. DOI: 10.1111/j.1365-2648.2009.05109.x
  20. K. M. Hillman et al. (2002). Duration of life-threatening antecedents prior to intensive care admission. Intensive care medicine, 28(11), 1629-1634. DOI: 10.1007/s00134-002-1496-y
  21. J. R. Lee, E. M. Kim, S. A. Kim & E. G. Oh. (2020). A Systematic Review of Early Warning Systems' Effects on Nurses' Clinical Performance and Adverse Events Among Deteriorating Ward Patients. Journal of patient safety, 16(3), E104-E113. DOI: 10.1097/PTS.0000000000000492
  22. T. W. Rice et al. (2007). Comparison of the Spo2/Fio2 Ratio and the Pao2/Fio2 Ratio in Patients With Acute Lung Injury or ARDS. Chest, 132(2), 410-417. DOI: 10.1378/chest.07-0617
  23. N. Bilan, A. Dastranji & A. B. Ghalehgolab (2015). Comparison of the spo2/fio2 ratio and the pao2/fio2 ratio in patients with acute lung injury or acute respiratory distress syndrome. Journal of cardiovascular and thoracic research, 7(1), 28-31. DOI: 10.15171/jcvtr.2014.06
  24. R. M. H. Schein, N. Hazday, M. Pena, B. H. Ruben & C. L. Sprung. (1990). Clinical Antecedents to In-Hospital Cardiopulmonary Arrest. Chest, 98(6), 1388-1392. DOI: 10.1378/chest.98.6.1388
  25. N. W. Loftus & D. Smith. (2019). Investigating ward nurses' responses to deteriorating patients. Nursing standard, 34(3), 76-82. DOI: 10.7748/ns.2019.e11020
  26. C. Franklin & J. Mathew (1994). Developing strategies to prevent inhospital cardiac arrest: Analyzing responses of physicians and nurses in the hours before the event. Critical care medicine, 22(2), 244-247. DOI: 10.1097/00003246-199402000-00014
  27. C. H. Nickel, J. Kellett, T. Cooksley, R. Bingisser, D. P. Henriksen & M. Brabrand. (2016). Combined use of the National Early Warning Score and D-dimer levels to predict 30-day and 365-day mortality in medical patients. Resuscitation, 106, 49-52. DOI: 10.1016/j.resuscitation.2016.06.012
  28. W. Y. Kim et al. (2017). A risk scoring model based on vital signs and laboratory data predicting transfer to the intensive care unit of patients admitted to gastroenterology wards. Journal of critical care, 40, 213-217. DOI: 10.1016/j.jcrc.2017.04.024
  29. J. M. Palmisano, F. W. Moler, C. Galura, M. Gordon & J. R. Custer. (1993). Influence of tidal volume, respiratory rate, and supplemental oxygen flow on delivered oxygen fraction using a mouth to mask ventilation device. The Journal of emergency medicine, 11(6), 685-689. DOI: 10.1016/0736-4679(93)90627-J