DOI QR코드

DOI QR Code

계획된 행위이론을 기반으로 노인의 정보통신 테크놀로지 사용 의도에 영향을 미치는 요인

Factors Affecting on the Intention to Use of Information and Communication Technology for the Elderly Based on the Theory of Planned Behavior

  • 하영미 (경상대학교 간호대학 & 건강과학연구원) ;
  • 양승경 (경남대학교 간호학과) ;
  • 최문종 (대구창조경제혁신센터 본부)
  • 투고 : 2021.01.19
  • 심사 : 2021.04.20
  • 발행 : 2021.04.28

초록

본 연구는 계획된 행위이론을 기반으로 지역사회 거주 노인의 정보통신 테크놀로지 사용 의도에 영향을 미치는 요인을 파악하기 위한 조사연구이다. 자료 수집은 G시와 S시에 거주하는 60세 이상 노인 99명을 대상으로 2020년 1월 한달 동안 설문조사를 실시하였으며, SPSS 23.0 프로그램을 활용하여 기술통계, t-test, ANOVA, Pearson's correlation coefficient, 다중회귀분석을 실시하였다. 연구결과 지역사회 노인의 정보통신 테크놀로지 사용에 대한 태도는 3.79±0.74점, 주관적 규범은 3.43±0.66점, 지각된 행위통제는 3.12±0.71점, 사용의도는 3.23±0.77점이였다. 지역사회 노인의 정보통신 테크놀로지 사용 의도에 영향을 미치는 요인은 주관적 규범(β=.35, p<.001), 지각된 행위 통제(β=.35, p<.001)였으며, 이들 변수의 설명력은 48.7%였다. 따라서 지역사회 노인의 정보통신 테크놀로지 사용 의도를 촉진하기 위해서는 위의 변수를 고려한 체계적인 방안 마련이 필요할 것으로 생각된다.

The purpose of this study was to identify the intention to use of information and communication technology(ICT) for the elderly residing in community based on the theory of planned behavior. The subjects were 99 elderly aged 60 or older living in G and S cities from January 1 to 31 in 2020 using questionnaire. The data was analyzed using the SPSS 23.0 program for descriptive statistics, t-test, ANOVA, Pearson's correlation coefficient, multiple regression. As a result, the mean of the attitude to use of ICT for the elderly was 3.79±0.74, subjective norm was 3.43±0.66, perceived behavioral control was 3.12±0.71, behavior intention was 3.23±0.77. The intent to use of ICT for the elderly are subjective norm(β=.35, p<.001), perceived behavior control(β=.35, p<.001), had an explanatory power of 48.7%. Therefore, it is necessary that systematic program considering the above factors for elderly residing in community to promote the intent to use of ICT.

키워드

참고문헌

  1. Statistics Korea. (2020). http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1BPA003&vw_cd=&list_id=&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=B1&path=%252Fconts%252FnsportalStats%252FnsportalStats_0102Body.jsp
  2. E. S. Lee. (2017) The physical activity and smart health care of trend for the elderly. Journal of Digital Convergence, 15(8), 511-516. DOI: 10.14400/JDC.2017.15.8.511
  3. S. Chae, Y. Yang & T. Han. (2017). The Fourth Industrial Revolution and Multimedia Converging Technology: Pervasive AR Platform Construction using a Mobile Robot based Projection Technology. Journal of Korea Multimedia Society, 20(2), 298-312. DOI: 10.9717/kmms.2017.20.2.298
  4. H. C. Choi. (2015) A conceptual analysis of "yunghab". Journal of Korean Language and Literature, 37(2), 11-30.
  5. K. Schwab. (2016). The fourth industrial revolution: what it means, how to respond. Foreign Affairs [Internet]; Tempa (FL): Council of Foreign Relations; 2015 Dec 12 [updated 2016 Jan 14; cited 2021 Jan 11]. Available from: https://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
  6. S. H Tak. (2018). Gerontological nursing in the era of the fourth industrial revolution. Journal of Korean Gerontological Nursing, 20(1), 160-165. DOI : 0.17079/jkgn.2018.20.s1.s160 https://doi.org/10.17079/jkgn.2018.20.s1.s160
  7. S. J. Czaja, N. Charness, A. D. Fisk & W. Rogers. (2002). Welcome to Gerontechnology 2002: Creative use of technology for better aging. Gerontechnology, 2(1), 1-2. DOI : 10.4017/gt.2002.02.01.001.00
  8. S. Kang. (2019). A digital siver care for the health and rehabilitation of the elderly. Journal of Information and Security, 19(3), 81-86. DOI : 10.33778/kcsa.2019.19.3.081
  9. S. N. McCully, B. P. Don & J. A. Updegraff. (2013). Using the internet to help with diet, weight, and physical activity: results from the health information national trends survey(HINTS). Journal of Medical Internet Research, 15(8), e148. DOI : 10.2196/jmir.2612
  10. F. Cardinaux, D. Bhowmik, C. Abhayaratne & M. S. Hawley. (2011) Video based technology for ambient assisted living: a review of the literature. Journal of Ambient Intelligence and Smart Environments, 3(3), 253-269. DOI : 10.3233/AIS-2011-0110
  11. S. T. Peek, E. J. Wouters, J. V. Hoof, K. G. Luijkx, H. R. Boeije & H. J. Vrijhoef. (2014). Factors influencing acceptance of technology for aging in place: a systematic review. International Journal of Medical Informatics, 83(4), 235-248. DOI : 10.1016/j.ijmedinf.2014.01.004
  12. M. S. Kwag, K. M. Cho & K. Y. Lee. (2014). Verification of an adaptive model of technology acceptance model and theory of planned behavior for online purchasing intentions of sports products: the moderating effects of lifestyle. The Korean Journal of Physical Education, 53(3), 423-441.
  13. S. T. An, H. N. Kang & S. D. Chung. (2018). Older adults' adoption of health-related mobile application: the role of empowerment. Journal of Public Relations, 22(6), 53-74. DOI : 10.15814/jpr.2018.22.6.53
  14. I. Ajzen. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. DOI :10.1016/0749-5978(91)90020-T
  15. S. Taylor & P. A. Todd. (1995). Understanding information technology usage: A test of competing models. Information Systems Research, 6(2), 144-176. DOI : 10.1287/isre.6.2.144
  16. V. Venkatesh, J. Y. L. Thong & X. Xu. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. Management Information Systems Quarterly, 36(1), 157-178. DOI: 10.2307/41410412
  17. H. Kang & S. An. (2019) Content analysis of news reports about older adult' health-related information and communication technology (ICT) based on technology acceptance model(TAM). Journal of Speech, Media and Communication Research, 18(2), 7-45. https://doi.org/10.22902/JSMCR.2019.18.2.001
  18. D. S. Ko. (2019). Elderly's intention to use wearable device : application of technology acceptance model. Journal of Sport and Leisure Studies, 78, 347-360. https://doi.org/10.51979/KSSLS.2019.10.78.347
  19. K. Glanz, B. K. Rimer & K. Viswanath. (2015). Health behavior: Theory, research, and practice (5th ed.). San Francisco: Jossey-Bass.
  20. I. Ajzen. (2006). Constructing a theory of planned behavior questionnaire. Available at https://people.umass.edu/aizen/pdf/tpb.measurement.pdf
  21. J. Francis, M. P. Eccles, M. Johnston, A. E. Walker, J. Grimshaw, R. Foy, E. F. S. Kaner et al. (2004). Constructing questionnaires based on the theory of planned behaviour: a manual for health services researchers. Newcastle upon Tyne, UK: Centre for Health Services Research, University of Newcastle upon Tyne.
  22. Statistics Korea. (2018). statistics of elderly. http://kostat.go.kr/portal/korea/kor_nw/1/1/index.board
  23. M. Anderson & A. Perrin. (2017). Tech adoption climbs among older adults. Pew Research Center. https://www.pewresearch.org/internet/wp-content/uploads/sites/9/2017/05/PI_2017.05.17_Older-Americans-Tech_FINAL.pdf
  24. S. R. Um, H. R. Shin, Y. S. Kim. (2020). An analysis of the factors affecting technology acceptance : focusing on fintech in high-end technology. Journal of Digital Convergence, 18(2), 57-71. https://doi.org/10.14400/JDC.2020.18.2.057
  25. C. Munteanu, B. Axtell, H. Rafih, A. Liaqat & Y. Aly. (2018). Designing for older adults: overcoming barriers toward a supportive, safe, and Healthy retirement. Pennsylvania : University of Pennsylvania.
  26. M. S. No, H. N. Heo, Y. J. Cho & H. S. Lee. (2019). 2018 survey on the .Internet usage. National Information Society Agency. https://www.nia.or.kr/site/nia_kor/ex/bbs/View.do?cbIdx=99870&bcIdx=21013&deptCode='&parentSeq=21013
  27. Y. S. Kim. (2019). Current state and development directions for dementia care technology. Health and welfare policy forum, 276, 42-57.
  28. J. Jung & K. S. An. (2013). A study on the intention of utilizing senior education program including the theory of planned behavior - focused on chungcheongnam-do senior welfare center. The Journal of Digital Policy & Management, 11(11), 683-691.
  29. M. S. Hagger, N. L. D. Chatzisarantis, V. Barkoukis, J. C. K. Wang, V. Hein, M. Pihu I. Soos et al. (2007). Cross-cultural generalizability of the theory of planned behavior among young people in a physical activity context. Journal of Sport and Exercise Psychology, 29(1), 1-19. DOI : 10.1123/jsep.29.1.2
  30. E. J. Porter & L. H. Ganong. (2002). Considering the use of a personal emergency response system: an experience of frail, older women. Care Management Journals, 3(4), 192-198. DOI : 10.1891/cmaj.3.4.192.57452
  31. J. D. Kwon, Y. Kim & T. Y. Um. (2012) A qualitative study on experiences of internet use in their daily lives and its meaning among older adults. Journal of the Korean Gerontological Society, 32(3), 835-850.
  32. S. M. Kim, J. Y. Park & C. H. Han. (2010) Influential factors on rehabilitation exercise practice in elderly limited activities of daily-living. The Journal of the Korea Contents Association, 10(3), 271-281. https://doi.org/10.5392/JKCA.2010.10.3.271
  33. V. Boudewyns. (2013). A Meta-Analytical Test of Perceived Behavioral Control Interactions in the Theory of Planned Behavior. Doctoral dissertation. University of Maryland College Park, US.
  34. I. Ajzen. (2002). Perceived behavioral control, self-efficacy, locus of control and the theory of planned behavior. Journal of Applied Social Psychology, 32, 665-683. https://doi.org/10.1111/j.1559-1816.2002.tb00236.x
  35. J. An & K. Park. (2019). Influencing factors on pre-implementation acceptance of geron-technology for the elderly residing in community. Journal of Digital Convergence, 17(7), 157-165. DOI :10.14400/JDC.2019.17.7.157
  36. Y. K. Sohn & B. K. Lee. (2012). Efficacy of social cognitive behavior model based on the theory of planned behavior. Korean Journal of Journalism & Communication Studies, 56(6), 127-161.
  37. B. M. Chung, S. J. Min, Y. H. Lee & Y. J. Han. (2020). Internet usage survey of korea 2019. National Information Society Agency. https://www.nia.or.kr/site/nia_kor/ex/bbs/View.do?cbIdx=99870&bcIdx=21930&parentSeq=21930
  38. R. Steele, A. Lo, C. Secombe & Y. K. Wong. (2009). Elderly persons' perception and acceptance of using wireless sensor networks to assist healthcare. International Journal of Medical Informatics, 78(12), 788-801. DOI : 10.1016/j.ijmedinf.2009.08.001