References
- Statistics Korea. (2020). Statistics on the Aged
- J. J. Choi, J. S. Gim & T. H. Kim. (2017) Analyzing Driving Environment Effects on Severity of Elderly Driver's Traffic Accidents. Journal of Transport Research 24(1), 79-94. DOI : 10.34143/jtr.2017.24.1.79
- Gyeonggi Research Institute. (2020). A study on the improvement of road traffic facilities for elderly drivers in a super-aged society
- The Seoul Institute. (2019). A study on risk assessment techniques for prevention of road traffic accidents.
- Korea Road Traffic Authority. (2012). Analysis of traffic accident characteristics and accident prevention measures for elderly drivers.
- J. H. Kim. J. S. Oh & S. C. Lee. (2006). The Influences of Driving Behavior Determinants on Traffic Violations and Accidents. Korean Society for Industrial and Organizational Psychology. 19(3). 349-369.
- J. S. Oh, E. Y. Lee, J. B. Ryu & W. Y. Lee. (2015). An Analysis for Main Vulnerable Situations and Human Errors of Elderly Drivers' Traffic Accidents. Journal of Transport Research. 22(4). 57-75. DOI : 10.34143/jtr.2015.22.4.57
- S. C. Lee. (2006). Psychological effects on elderly driver's traffic accidents. Korean Psychological Journal of Culture and Social Issues. 12(5). 149-167.
- J. M. Jang, J. S. Choi & T. H. Gim. (2017). Analyzing Driving Environment Effects on Severity of Elderly Driver's Traffic Accidents. Journal of Transport Research. 24(1). 79-94. DOI : 10.34143/jtr.2017.24.1.79
- S. H. Lee, W. D. Jeung & Y. H. Woo. (2012). Comparative Analysis of Elderly's and Non-elderly's Human Traffic Accident Severity. The Korea Institute Of Intelligent Transport Systems. 11(6). 133-144. https://doi.org/10.12815/kits.2012.11.6.133
- S. G. Shin & M. S. Cho. (2010). A Study on Traffic Accident Prevention through Older Driver's Characteristics Analysis. Journal of Korean Public Police and Security Studies. 7(2). 157-185 DOI : 10.25023/kapsa.7.2.201008.157
- S. J. Lim, J. T. Park, Y. I. Kim & T. H. Kim. (2012). Analysis of Elderly Drivers' Accident Models Considering Operations and Physical Characteristics. Korean Society of Transportation. 30(6). 37-46. DOI : 10.7470/jkst.2012.30.6.037
- M. J. lEE & M. S. Lee. (2014). Elderly Driver's Perceived Driving Ability and Driving Behavior Associated with Traffic Accident Risk. Crisis and Emergency Management: Theory and Praxis. 10(12). 279-304.
- L. Dominique & M. Fred. (2010). The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives. Transportation Research Part A 44 291-305. https://doi.org/10.1016/j.tra.2010.02.001
- T. S. Peter, L. M. Fred, L. Dominique & A. Q. Mohammed. (2011). The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives. Accident Analysis and Prevention. 43(6). 1666-1676. https://doi.org/10.1016/j.aap.2011.03.025
- Y. O. Kang, S. R. Son & N. H. Cho. (2017) Analysis of Traffic Accidents Injury Severity in Seoul using Decision Trees and Spatiotemporal Data Visualization. Korea Land and Geospatial InformatiX Corporation. 47(2). 233-254 https://doi.org/10.22640/lxsiri.2017.47.2.223
- S. B. LEE, D. H. HAN & Y. I. LEE. (2015). Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level. Journal of Korean Society of Transportation. 33(5). 497-507 DOI : 10.7470/jkst.2015.33.5.497
- G. Chen, Z. Zhang, R. Qian, R. A. Tarefder, and Z. Tian. (2016). Investigating Driver Injury Severity Patterns in Rollover Crashes Using Support Vector Machine Models. Accident Analysis and Prevention. 90. 128-139. https://doi.org/10.1016/j.aap.2016.02.011
- M. Rezapour, A. Mehrara Molan, & K. Ksaibati. (2020). Analyzing injury severity of motorcycle at-fault crashes using machine learning techniques, decision tree and logistic regression models. International Journal of Transportation Science and Technology, 9(2), 89-99. https://doi.org/10.1016/j.ijtst.2019.10.002
- R. E. Mamlook et al. (2020). Utilizing Machine Learning Models to Predict the Car Crash Injury Severity among Elderly Drivers. IEEE International Conference on Electro Information Technology. July. 105-111. DOI : 10.1109/EIT48999.2020.9208259
- S. Alkheder, M. Taamneh, & S. Taamneh. (2017). Severity Prediction of Traffic Accident Using an Artificial Neural Network. Journal of Forecasting, 36(1), 100-108. https://doi.org/10.1002/for.2425
- J. H. Rho. (2012). Transportation planning : Travel demand theory and modeling
- Zhang, J., Li, Z., Pu, Z., & Xu, C. (2018). Comparing prediction performance for crash injury severity among various machine learning and statistical methods. IEEE Access, 6(c), 60079-60087. https://doi.org/10.1109/ACCESS.2018.2874979
- Mafi, S., AbdelRazig, Y., & Doczy, R. (2018). Machine Learning Methods to Analyze Injury Severity of Drivers from Different Age and Gender Groups. Transportation Research Record, 2672(38), 171-183. https://doi.org/10.1177/0361198118794292
- Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324