참고문헌
- Amran, Y.H.M., Alyousef, R., Alabduljabbar, H. and El-Zeadani, M. (2020), "Clean production and properties of geopolymer concrete; A review", J. Clean. Prod., 251, 119679. https://doi.org/10.1016/j.jclepro.2019.119679.
- Annadurai, S., Rathinam, K. and Kanagarajan, V. (2020), "Development of eco-friendly concrete produced with Rice Husk Ash (RHA) based geopolymer", Adv. Concrete Constr., 9(2), 139-147. https://doi.org/10.12989/acc.2020.9.2.139.
- Ashrafian, A., Gandomi, A.H., Rezaie-Balf, M. and Emadi, M. (2020), "An evolutionary approach to formulate the compressive strength of roller compacted concrete pavement", Meas., 152, 107309. https://doi.org/10.1016/j.measurement.2019.107309.
- Awoyera, P.O. (2018), "Predictive models for determination of compressive and split-tensile strengths of steel slag aggregate concrete", Mater. Res. Innov., 22(5), 287-293. https://doi.org/10.1080/14328917.2017.1317394.
- Babanajad, S.K., Gandomi, A.H. and Alavi, A.H. (2017), "New prediction models for concrete ultimate strength under true-triaxial stress states: An evolutionary approach", Adv. Eng. Softw., 110, 55-68. https://doi.org/10.1016/j.advengsoft.2017.03.011.
- Brake, N.A., Allahdadi, H. and Adam, F. (2016), "Flexural strength and fracture size effects of pervious concrete", Constr. Build. Mater., 113, 536-543. https://doi.org/10.1016/j.conbuildmat.2016.03.045.
- D'Aniello, M., Guneyisi, E.M., Landolfo, R. and Mermerdas, K. (2015), "Predictive models of the flexural overstrength factor for steel thin-walled circular hollow section beams", Thin Wall. Struct., 94, 67-78. https://doi.org/10.1016/j.tws.2015.03.020.
- Deepa Raj, S., Ganesan, N. and Abraham, R. (2020), "Role of fibers on the performance of geopolymer concrete exterior beam column joints", Adv. Concrete Constr., 9(2), 115-123. https://doi.org/10.12989/acc.2020.9.2.115.
- Farzampour, A. (2017), "Temperature and humidity effects on behavior of grouts", Adv. Concrete Constr., 5(6), 659-669. https://doi.org/10.12989/acc.2017.5.6.659.
- Farzampour, A. (2019), "Compressive behavior of concrete under environmental effects", Technical Report, Virginia Tech.
- Ferreira, C. (2001), "Gene expression programming: a new adaptive algorithm for solving problems", Complex Syst., 13(2), 87-129.
- Gandomi, A.H., Alavi, A.H., Gandomi, M. and Kazemi, S. (2017), "Formulation of shear strength of slender RC beams using gene expression programming, Part II: With shear reinforcement", Meas., 95, 367-376. https://doi.org/10.1016/j.measurement.2016.10.024.
- Gandomi, A.H., Alavi, A.H., Kazemi, S. and Gandomi, M. (2014), "Formulation of shear strength of slender RC beams using gene expression programming, Part I: Without shear reinforcement", Autom. Constr., 42, 112-121. https://doi.org/10.1016/j.autcon.2014.02.007.
- Gandomi, A.H. and Roke, D.A. (2015), "Assessment of artificial neural network and genetic programming as predictive tools", Adv. Eng. Softw., 88, 63-72. https://doi.org/10.1016/j.advengsoft.2015.05.007.
- Gautam, A. and Singh, V. (2020), "CLR-based deep convolutional spiking neural network with validation based stopping for time series classification", Appl. Intell., 50(3), 830-848. https://doi.org/10.1007/s10489-019-01552-y.
- Guneyisi, E.M., D'Aniello, M., Landolfo, R. and Mermerdas, K. (2013), "A novel formulation of the flexural overstrength factor for steel beams", J. Constr. Steel Res., 90, 60-71. https://doi.org/10.1016/j.jcsr.2013.07.022.
- Guneyisi, E.M. and Nour, A.I. (2019), "Axial compression capacity of circular CFST columns transversely strengthened by FRP", Eng. Struct., 191, 417-431. https://doi.org/10.1016/j.engstruct.2019.04.056.
- Hendriks, C.A., Worrell, E., De Jager, D., Blok, K. and Riemer, P. (1998), "Emission reduction of greenhouse gases from the cement industry", Emission Reduction of Greenhouse Gases from the Cement Industry, 939-944.
- Jindal, B.B. (2018), "Feasibility study of ambient cured geopolymer concrete-A review", Adv. Concrete Constr., 6(4), 387-405. https://doi.org/10.12989/acc.2018.6.4.387.
- John Britto, X. and Muthuraj, M.P. (2019), "Prediction of compressive strength of bacteria incorporated geopolymer concrete by using ANN and MARS", Struct. Eng. Mech., 70(6), 671-681. https://doi.org/10.12989/sem.2019.70.6.671.
- Kara, I.F. (2011), "Prediction of shear strength of FRP-reinforced concrete beams without stirrups based on genetic programming", Adv. Eng. Softw., 42(6), 295-304. https://doi.org/10.1016/j.advengsoft.2011.02.002.
- Kheder, G.F. (1999), "Two stage procedure for assessment of in situ concrete strength using combined non-destructive testing", Mater. Struct., 32(6), 410-417. https://doi.org/10.1007/BF02482712
- Kolluri, J., Kotte, V.K., Phridviraj, M.S.B. and Razia, S. (2020). "Reducing overfitting problem in machine learning using novel l1/4 regularization method", Proceedings of the Proceedings of the 4th International Conference on Trends in Electronics and Informatics, ICOEI 2020, 934-938.
- Koza, J.R. (1992), Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press.
- Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M.E., Humur, G. and Cevik, A. (2018), "Mechanical and durability properties of fly ash and slag based geopolymer concrete", Adv. Concrete Constr., 6(4), 345-362. https://doi.org/10.12989/acc.2018.6.4.345.
- Kusy, M. and Zajdel, R. (2014), "Probabilistic neural network training procedure based on Q(0)-learning algorithm in medical data classification", Appl. Intell., 41(3), 837-854. https://doi.org/10.1007/s10489-014-0562-9.
- Lin, J., Li, N.H., Alam, M.A. and Ma, Y. (2020), "Data-driven missing data imputation in cluster monitoring system based on deep neural network", Appl. Intell., 50(3), 860-877. https://doi.org/10.1007/s10489-019-01560-y.
- Lin, Y., Lai, C.P. and Yen, T. (2003), "Prediction of ultrasonic pulse velocity (UPV) in concrete", ACI Mater. J., 100(1), 21-28.
- Ma, C.K., Awang, A.Z. and Omar, W. (2018), "Structural and material performance of geopolymer concrete: A review", Constr. Build. Mater., 186, 90-102. https://doi.org/10.1016/j.conbuildmat.2018.07.111.
- Ma, T., Kuang, P. and Tian, W. (2020), "An improved recurrent neural networks for 3d object reconstruction", Appl. Intell., 50(3), 905-923. https://doi.org/10.1007/s10489-019-01523-3.
- Mansouri, I., Chacon, R. and Hu, J.W. (2017a), "Improved predictive model to the cross-sectional resistance of CFT", J. Mech. Sci. Technol., 31(8), 3887-3895. https://doi.org/10.1007/s12206-017-0733-9.
- Mansouri, I., Gholampour, A., Kisi, O. and Ozbakkaloglu, T. (2018), "Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques", Neural Comput. Appl., 29(3), 873-888. https://doi.org/10.1007/s00521-016-2492-4.
- Mansouri, I., Hu, J.W. and Kisi, O. (2016a), "Novel predictive model of the debonding strength for masonry members retrofitted with FRP", Appl. Sci., 6(11). https://doi.org/10.3390/app6110337.
- Mansouri, I. and Kisi, O. (2015), "Prediction of debonding strength for masonry elements retrofitted with FRP composites using neuro fuzzy and neural network approaches", Compos. Part B: Eng., 70, 247-255. https://doi.org/10.1016/j.compositesb.2014.11.023.
- Mansouri, I., Kisi, O., Sadeghian, P., Lee, C.H. and Hu, J.W. (2017b), "Prediction of ultimate strain and strength of FRP-confined concrete cylinders using soft computing methods", Appl. Sci., 7(8), 751. https://doi.org/10.3390/app7080751.
- Mansouri, I., Ozbakkaloglu, T., Kisi, O. and Xie, T. (2016b), "Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques", Mater. Struct., 49(10), 4319-4334. https://doi.org/10.1617/s11527-015-0790-4.
- Mo, K.H., Alengaram, U.J. and Jumaat, M.Z. (2016), "Structural performance of reinforced geopolymer concrete members: A review", Constr. Build. Mater., 120, 251-264. https://doi.org/10.1016/j.conbuildmat.2016.05.088.
- Mousavi, S.M., Aminian, P., Gandomi, A.H., Alavi, A.H. and Bolandi, H. (2012), "A new predictive model for compressive strength of HPC using gene expression programming", Adv. Eng. Softw., 45(1), 105-114. https://doi.org/10.1016/j.advengsoft.2011.09.014.
- Nath, P. and Sarker, P.K. (2015), "Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature", Cement Concrete Compos., 55, 205-214. https://doi.org/10.1016/j.cemconcomp.2014.08.008.
- Nour, A.I. and Guneyisi, E.M. (2019), "Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns", Compos. Part B: Eng., 173, 106938. https://doi.org/10.1016/j.compositesb.2019.106938.
- Nuaklong, P., Sata, V. and Chindaprasirt, P. (2016), "Influence of recycled aggregate on fly ash geopolymer concrete properties", J. Clean. Prod., 112, 2300-2307. https://doi.org/10.1016/j.jclepro.2015.10.109.
- Ozbay, E., Gesoglu, M. and Guneyisi, E. (2008), "Empirical modeling of fresh and hardened properties of self-compacting concretes by genetic programming", Constr. Build. Mater., 22(8), 1831-1840. https://doi.org/10.1016/j.conbuildmat.2007.04.021.
- Pandey, S.P., Singh, A.K., Sharma, R.L. and Tiwari, A.K. (2003), "Studies on high-performance blended/multiblended cements and their durability characteristics", Cement Concrete Res., 33(9), 1433-1436. https://doi.org/10.1016/S0008-8846(03)00091-7.
- Parveen, Mehta, A. and Saloni (2019), "Effect of ultra-fine slag on mechanical and permeability properties of Metakaolin-based sustainable geopolymer concrete", Adv. Concrete Constr., 7(4), 231-239. https://doi.org/10.12989/acc.2019.7.4.231.
- Prasad, B.K.R., Eskandari, H. and Reddy, B.V.V. (2009), "Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN", Constr. Build. Mater., 23(1), 117-128. https://doi.org/10.1016/j.conbuildmat.2008.01.014.
- Qiao, S., Tang, C., Jin, H., Peng, J., Davis, D. and Han, N. (2010), "KISTCM: Knowledge discovery system for traditional Chinese medicine", Appl. Intell., 32(3), 346-363. https://doi.org/10.1007/s10489-008-0149-4.
- Saha, A.K., Khan, M.N.N. and Sarker, P.K. (2018), "Value added utilization of by-product electric furnace ferronickel slag as construction materials: A review", Resour. Conserv. Recycl., 134, 10-24. https://doi.org/10.1016/j.resconrec.2018.02.034.
- Shahmansouri, A.A., Akbarzadeh Bengar, H. and Ghanbari, S. (2020), "Compressive strength prediction of eco-efficient GGBS-based geopolymer concrete using GEP method", J. Build. Eng., 31, 101326. https://doi.org/10.1016/j.jobe.2020.101326.
- Singh, N.B. and Middendorf, B. (2008), "Chemistry of blended cements part-I: Natural pozzolanas, fly ashes and granulated blast furnace slags", Cement Int., 6(4), 76-91.
- Singh, N.B. and Middendorf, B. (2009), "Chemistry of blended cements; Part 2: Silica fume, metakaolin, reactive ash from agricultural wastes, inert materials and non-Portland blended cements", Cement Int., 7(6), 78-93.
- Singh, N.B. and Middendorf, B. (2020), "Geopolymers as an alternative to Portland cement: An overview", Constr. Build. Mater., 237, 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455.
- Sreenivasulu, C., Guru Jawahar, J. and Sashidhar, C. (2019), "Flexural studies on reinforced geopolymer concrete beams under pure bending", Adv. Concrete Constr., 8(1), 33-37. https://doi.org/10.12989/acc.2019.8.1.033.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.
- Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrason., 49(1), 53-60. https://doi.org/10.1016/j.ultras.2008.05.001.
- Venkatesan, M., Zaib, Q., Shah, I.H. and Park, H.S. (2019), "Optimum utilization of waste foundry sand and fly ash for geopolymer concrete synthesis using D-optimal mixture design of experiments", Resour. Conserv. Recycl., 148, 114-123. https://doi.org/10.1016/j.resconrec.2019.05.008.
- Zhou, H., Zhao, H. and Zhang, Y. (2020), "Nonlinear system modeling using self-organizing fuzzy neural networks for industrial applications", Appl. Intell., 50(5), 1657-1672. https://doi.org/10.1007/s10489-020-01645-z.