참고문헌
- Achillides, Z. (1998), "Bond behavior of FRP bars in concrete", Ph.D. Dissertation, Department of Civil and Structural Engineering, University of Sheffield.
- Achillides, Z. and Pilakoutas, K. (2004), "Bond behavior of fiber reinforced polymer bars under direct pullout conditions", J. Compos. Constr., ASCE, 8(2), 173-181. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:2(173).
- ACI Committee 440.1R-03 (2003), Guide for the Design and Construction of Concrete Reinforced with FRP Bars, American Concrete Institute, Farmington Hills, Michigan.
- ACI Committee 440.1R-06 (2006), Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, American Concrete Institute, Farmington Hills, Michigan.
- ACI Committee 440.1R-15 (2015), Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, American Concrete Institute, Farmington Hills, Michigan.
- Ahmad, S., Pilakoutas, K., Rafi, M.M. and Zaman, Q.U. (2018), "Bond strength prediction of steel bars in low strength concrete by using ANN", Comput. Concrete, 22(2), 249-259. https://doi.org/10.12989/cac.2018.22.2.249.
- Al-Mudhafar, W.J. (2019), "Bayesian kriging for reproducing reservoir heterogeneity in a tidal depositional environment of a sandstone formation", J. Appl. Geophys., 160, 84-102. https://doi.org/10.1016/j.jappgeo.2018.11.007.
- Aly, R. (2005), "Experimental and analytical studies on bond behavior of tensile lap spliced FRP reinforcing bars in concrete", Ph.D. Dissertation, Department of Civil Engineering, University of Sherbrook, Sherbrook.
- Ashrafi, H., Bazli, M. and Vatani Oskouei, A. (2017), "Enhancement of bond characteristics of ribbed-surface GFRP bars with concrete by using carbon fiber mat anchorage", Constr. Build. Mater., 134, 507-519. https://doi.org/10.1016/j.conbuildmat.2016.12.083.
- Asteris, P.G., Ashrafian, A. and Rezaie-Balf, M. (2019), "Prediction of the compressive strength of self-compacting concrete using surrogate models", Comput. Concrete, 24(2), 137-150. https://doi.org/10.12989/cac.2019.24.2.137.
- Baena, M., Torres, L., Turon, A. and Barris, C. (2009), "Experimental study of bond behavior between concrete and FRP bars using a pull-out test", Compos. Part B, 40(8), 784-797. https://doi.org/10.1016/j.compositesb.2009.07.003.
- Bazli, M., Ashrafi, H. and Vatani Oskouei, A. (2017), "Experiments and probabilistic models of bond strength between GFRP bar and different types of concrete under aggressive environments", Constr. Build. Mater., 148, 429-443. https://doi.org/10.1016/j.conbuildmat.2017.05.046.
- Behnood, A., Olek, J. and Glinicki, M.A. (2015), "Predicting modulus elasticity of recycled aggregate concrete using M5 model tree algorithm", Constr. Build. Mater., 94, 137-147. https://doi.org/10.1016/j.conbuildmat.2015.06.055.
- CAN/CSA S6-14 (2014), Canadian Highway Bridge Design Code, Canadian Standards Association, Ontario, Canada.
- CAN/CSA S806-12 (2012), Design and Construction of Building Components with Fiber Reinforced Polymers, Canadian Standards Association, Ontario, Canada.
- Chaallal, O. and Benmokrane, B. (1993), "Pullout and bond of glass fibre rods embedded in concrete and cement grout", Mater. Struct., 26(3), 167-175. https://doi.org/10.1007/BF02472934.
- Choi, D.U., Chun, S.C. and Ha, S.S. (2012), "Bond strength of glass fiber-reinforced polymer bars in unconfined concrete", Eng. Struct., 34, 303-313. https://doi.org/10.1016/j.engstruct.2011.08.033.
- Choi, Y.C., Bae, B.I., Cho, K.H. and Choi, H.K. (2014), "Experimental study on the performance of tensile lap-spliced GFRP rebars in concrete beam", Mag. Concrete Res., 66(24), 1250-1262. https://doi.org/10.1680/macr.14.00111.
- Conoscenti, C., Rotigliano, E., Cama, M., Caraballo-Arias, N.A., Lombardo, L. and Agnesi, V. (2016), "Exploring the effect of absence selection on landslide susceptibility models: a case study in Sicily, Italy", Geomorphology, 261, 222-235. https://doi.org/10.1016/j.geomorph.2016.03.006.
- Ehsani, M.R., Saadatmanesh, H. and Tao, S. (1993), "Bond of GFRP rebars to ordinary-strength concrete", ACI Int. Symp. on Non-Metallic Continuous Reinforcement, Vancouver, Canada.
- Ehsani, M.R., Saadetmanesh, H. and Tao, S. (1996), "Design recommendation for bond of GFRP bars to concrete", J. Struct. Eng., ASCE, 122(3), 247-254. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(247)
- Esfahani, M.R., Rakhshanimehr, M. and Mousavi, S.R. (2013), "Bond strength of lap-spliced GFRP bars in concrete beams", J. Compos. Constr., ASCE, 17(3), 314-323. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000359.
- Faza, S.S. and GangaRao, H.V.S. (1990), "Bending and bond behaviour of concrete beams reinforced with plastic rebars", Transportation Research Record, No. 1290, 185-193.
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Statist., 19(1), 1-67. https://doi.org/10.1214/aos/1176347963
- Golafshani, E.M., Rahai, A. and Hosseini Kebria, S.S. (2014), "Prediction of the bond strength of ribbed steel bars in concrete based on genetic programming", Comput. Concrete, 14(3), 327-345. https://doi.org/10.12989/cac.2014.14.3.327 327.
- Golafshani, E.M., Rahai, A. and Sebt, M.H. (2015), "Artificial neural network and genetic programming for predicting the bond strength of GFRP bars in concrete", Mater. Struct., 48(5), 1581-1602. https://doi.org/10.1617/s11527-014-0256-0.
- Guneyisi, E.M., Mermerdas, K. and Gultekin, A. (2016), "Evaluation and modeling of ultimate bond strength of corroded reinforcement in reinforced concrete elements", Mater. Struct., 49(8), 3195-3215. https://doi.org/10.1617/s11527-015-0713-4.
- Hao, Q.D., Wang, B. and Ou, J.P. (2006), "Fiber reinforced polymer rebar's application to civil engineering", Concrete, 9, 38-40.
- Harajli, M. and Abouniaj, M. (2010), "Bond performance of GFRP bars in tension: experimental evaluation and assessment of ACI 440 guidelines", J. Compos. Constr., ASCE, 14(6), 659-668. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000139.
- Hossain, K.M.A., Ametrano, D. and Lachemi, M. (2017), "Bond strength of GFRP bars in ultra-high strength concrete using RILEM beam tests", J. Build. Eng., 10, 69-79. https://doi.org/10.1016/j.jobe.2017.02.005.
- Japan Society of Civil Engineers, JSCE (1997), Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials, Tokyo, Japan.
- Jekabsons, G. (2010a), "ARESLab: Adaptive Regression Splines toolbox for MATLAB/Octave", Institute of Applied Computer Systems, Riga Technical University, Latvia.
- Jekabsons, G. (2010b), "M5PrimeLab: M5' Regression Tree, Model Tree, and tree ensemble toolbox for MATLAB/Octave", Institute of Applied Computer Systems, Riga Technical University, Latvia.
- Kanakubo, T., Yonemaru, K., Fukuyama, H., Fujisawa, M. and Sonobe, Y. (1993), "Bond performance of concrete members reinforced with FRP bars", International Symposium: Fiber-Reinforced Plastic Reinforcement for Concrete Structues, SP138, ACI Proceedings, 767-788.
- Koroglu, M.A. (2018), "Artificial neural network for predicting the flexural bond strength of FRP bars in concrete", Sci. Eng. Compos. Mater., 26(1), 12-29. https://doi.org/10.1515/secm2017-0155.
- Kotynia, R., Szczech, D. and Kaszubska, M. (2017), "Bond behavior of GRFP bars to concrete in beam test", Procedia Eng., 193, 401-408. https://doi.org/10.1016/j.proeng.2017.06.230.
- Krige, D. (1951), "A stitistical approach to some basic mine valuation problems on the witwatersrand", J. South. Afr. Inst. Min. Metal., 52, 119-139.
- Lee, J.Y., Yi, C.K. and Cheong, Y.G. (2009), "Experimental study on the FRP-concrete bond behavior under repeated loadings", Mech. Compos. Mater., 45(6), 609-618. https://doi.org/10.1007/s11029-010-9117-2.
- Li, C. and Pan, Q. (2019), "Adaptive optimization methodology based on Kriging modeling and a trust region method" Chinese J. Aeronaut., 32(2), 281-295. https://doi.org/10.1016/j.cja.2018.11.012.
- Lin, H., Zhao, Y., Feng, P., Ye, H., Ozbolt, J., Jiang, C. and Yang, J.Q. (2019), "State-of-the-art review on the bond properties of corroded reinforcing steel bar", Constr. Build. Mater., 213, 216-233. https://doi.org/10.1016/j.conbuildmat.2019.04.077.
- Lophaven, S.N., Nielsen, H.B. and Sndergaard, J. (2002), DACEa MATLAB Kriging Toolbox, Ver. 2.0, IMM, Kongens Lyngby, Denmark.
- Makitani, E., Irisawa, I. and Nishiura, N. (1993), "Investigation of bond in concrete member with fibre reinforced plastic bars", Fibre-Reinforced-Plastic Reinforcement for Concrete Structures International Symposium, ACI SP138-20, 315-331.
- Mallipeddi, R. and Lee, M. (2015), "An evolving surrogate model-based differential evolution algorithm", Appl. Soft Comput., 34, 770-787. https://doi.org/10.1016/j.asoc.2015.06.010.
- Malvar, L.J. (1994), "Bond stress-slip characteristics of FRP rebars", Report TR- 2013-SHR, Naval Facilities Eng. Service Center, Port Hueneme, California.
- Mansouri, I., Ozbakkaloglu, T., Kisi, O. and Xie, T. (2016), "Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques", Mater. Struct., 49(10), 4319-4334. https://doi.org/10.1617/s11527-015-0790-4.
- Matheron, G. (1970), Random Functions and their Applications in Geology, Springer, Plenum, New York.
- Maurel, O., Dekoster, M. and Buyle-Bodin, F. (2005), "Relation between total degradation of steel concrete bond and degree of corrosion of RC beams experimental and computational studies", Comput. Concrete, 2(1), 1-18. https://doi.org/10.12989/cac.2005.2.1.001.
- Moodi, Y., Farahi Shahri, S. and Mousavi, S.R. (2017), "Providing a model for estimating the compressive strength of square and rectangular columns confined with a variety of fibre-reinforced polymer sheets", J. Reinf. Plast. Compos., 36(21), 1602-1612. https://doi.org/10.1177/0731684417720837.
- Mosley, C.P., Tureyen, A.K. and Frosch, R.J. (2008), "Bond strength of nonmetallic reinforcing bars", ACI Struct. J., 105(5), 634-642.
- Nanni, A., Al-Zaharani, M., Al-Dulaijan, S., Bakis, C. and Boothby, I. (1995), "Bond of FRP reinforcement to concretee-xperimental results", Non-metallic (FRP) Reinforcement for Concrete Struct., Proceedings of the Second Int. RILEM Symposium, CRC Press.
- Nguyen, H., Bui, X.N., Tran, Q.H. and Mai, N.L. (2019), "A new soft computing model for estimating and controlling blast-produced ground vibration based on Hierarchical K-means clustering and Cubist algorithms", Appl. Soft Comput., 77, 376-386. https://doi.org/10.1016/j.asoc.2019.01.042.
- Okelo, R. and Yuan, R.L. (2005), "Bond strength of fiber reinforced polymer reinforcement bars in normal strength concrete", J. Compos. Constr., ASCE, 9(3), 203-213. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:3(203).
- Orangun, C.O., Jirsa, J.O. and Breen, J.E. (1977), "Reevaluation of test data on development length and splices", ACI J. Proc., 74(3), 114-122.
- Park, J.S., Lim, A.R., Kim, J. and Lee, J.Y. (2016), "Bond performance of fiber-reinforced polymer rebars in different casting positions", Polym. Compos., 37(7), 2098-2108. https://doi.org/10.1002/pc.23388.
- Pay, A.C., Canbay, E. and Frosch, R.J. (2014), "Bond strength of spliced fiber-reinforced polymer reinforcement", ACI Struct. J., 111(2), 257-266.
- Pleimann, L.G. (1987), "Tension and bond pull-out tests of deformed fibreglass rods", Final Report for Marshall-Vega Corporation, Marshall, Arkansas, Civil Engineering Department, University of Arkansas, Fayetteville, 5-11.
- Quinlan, J.R. (1992), "Learning with continuous classes", Proceedings of Australian Joint Conference on Artificial Intelligence, World Scientific Press, Singapore.
- Rakhshanimehr, M., Mousavi, S.R., Esfahani, M.R. and Farahi Shahri, S. (2018), "Establishment and experimental validation of an updated predictive equation for the development and lapspliced length of GFRP bars in concrete", Mater. Struct., 51(15). https://doi.org/10.1617/s11527-018-1137-8.
- Rezaei, A. (2017), "Effect of transverse reinforcement on the bond strength of spliced GFRP bars in concrete beams", Master Dissertation, University of Sistan and Baluchestan, Zahedan, Iran. (in Persian)
- Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. (1989), "Design and analysis of computer experiments", Stat. Sci., 4(4), 409-435. https://doi.org/10.1214/ss/1177012413
- Saleh, N., Ashour, A., Lam, D. and Sheehan, T. (2019), "Experimental investigation of bond behaviour of two common GFRP bar types in high-strength concrete", Constr. Build. Mater., 201, 610-622. https://doi.org/10.1016/j.conbuildmat.2018.12.175.
- Shirkhani, A., Davarnia, D. and Farahmand Azar, B. (2019), "Prediction of bond strength between concrete and rebar under corrosion using ANN", Comput. Concrete, 23(4), 273-279. https://doi.org/10.12989/cac.2019.23.4.273.
- Tepfers, R. (1982), "Tensile lap splices with confining reinforcement", Contribution to the Int. Conference on Bond in Concrete, Paisley, Scotland, 318-330.
- Tighiouart, B., Benmokrane, B. and Gao, D. (1998), "Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars", Constr. Build. Mater., 12(8), 453-462. https://doi.org/10.1016/S0950-0618(98)00027-0.
- Tighiouart, B., Benmokrane, B. and Mukhopadhyaya, P. (1999), "Bond strength of glass FRP rebars splices in beams under static loading", Constr. Build. Mater., 13(7), 383-392. https://doi.org/10.1016/S0950-0618(99)00037-9.
- Turk, K., Caliskan, S. and Yildirim, M.S. (2005), "Influence of loading condition and reinforcement size on the concrete/reinforcement bond strength", Struct. Eng. Mech., 19(3), 337-346. https://doi.org/10.12989/sem.2005.19.3.337.
- Wambeke, B. and Shield, C. (2006), "Development length of glass fiber-reinforced polymer bars in concrete", ACI Struct. J., 103(1), 11-17.
- Wang, X. and Liu, X. (2004), "Bond strength modeling for corroded reinforcement in reinforced concrete", Struct. Eng. Mech., 17(6), 863-878. https://doi.org/10.12989/sem.2004.17.6.863.
- Wang, Y. and Witten, I.H. (1997), "Induction of model trees for predicting continuous classes", Proceedings of the Poster Papers of the European Conference on Machine Learning, University of Economics, Prague, Czech Republic.
- Williams, K.T. and Gomez, J.D. (2016), "Predicting future monthly residential energy consumption using building characteristics and climate data: a statistical learning approach", Energy Build., 128, 1-11. https://doi.org/10.1016/j.enbuild.2016.06.076.
- Xue, W., Zheng, Q., Yang, Y. and Fang, Z. (2014), "Bond behavior of sand-coated deformed glass fiber reinforced polymer rebars", J. Reinf. Plast. Compos., 33(10), 895-910. https://doi.org/10.1177/073168441352 0263.
- Yao, L., Zhang, L., Zhang, L. and Li, X. (2015), "Prediction of initiation time of corrosion in RC using meshless methods", Comput. Concrete, 16(5), 669-682. https://doi.org/10.12989/cac.2015.16.5.669.
- Zemour, N., Asadian, A., Ahmed, E.H., Khayat, K.H. and Benmokrane, B. (2018), "Experimental study on the bond behavior of GFRP bars in normal and self-consolidating concrete", Constr. Build. Mater., 189, 869-881. https://doi.org/10.1016/j.conbuildmat.2018.09.045.
- Zhou, J., Chen, X. and Chen, S. (2012), "Effect of different environments on bond strength of glass fiber-reinforced polymer and steel reinforcing bars", KSCE J. Civil Eng., 16(6), 994-1002. https://doi.org/10.1007/s12205-012-1462-3.