DOI QR코드

DOI QR Code

Modeling concrete fracturing using a hybrid finite-discrete element method

  • Elmo, Davide (NBK Institute of Mining Engineering, University of British Columbia) ;
  • Mitelman, Amichai (NBK Institute of Mining Engineering, University of British Columbia)
  • 투고 : 2020.10.06
  • 심사 : 2021.02.14
  • 발행 : 2021.04.25

초록

The hybrid Finite-Discrete Element (FDEM) approach combines aspects of both finite elements and discrete elements with fracture mechanics principles, and therefore it is well suited for realistic simulation of quasi-brittle materials. Notwithstanding, in the literature its application for the analysis of concrete is rather limited. In this paper, the proprietary FDEM code ELFEN is used to model concrete specimens under uniaxial compression and indirect tension (Brazilian tests) of different sizes. The results show that phenomena such as size effect and influence of strain-rate are captured using this modeling technique. In addition, a preliminary model of a slab subjected to dynamic shear punching due to progressive collapse is presented. The resulting fracturing pattern of the impacted slab is similar to observations from actual collapse.

키워드

참고문헌

  1. ASTM C496 (1984), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, Annual Book of ASTM, Standards, Vol. 0.042, Philadelphia.
  2. Bazant, Z.P. (2000), "Size effect", Int. J. Solid. Struct., 37(1-2), 69-80. https://doi.org/10.1016/S0020-7683(99)00077-3.
  3. Bazant, Z.P. and Planas, J. (1998), Fracture Size Effect in Concrete and other Quasibrittle Materials, CRC Press, Boca Raton.
  4. Bazant, Z.P., Kazemi, M.T., Hasegawa, T. and Mazars, J. (1991), "Size effect in Brazilian split-cylinder tests: measurements and fracture analysis", ACI Mater. J., 88(3), 325-332.
  5. Berenbaum, R. and Brodie, I. (1959), "Measurement of the tensile strength of brittle materials", Brit. J. Appl. Phys., 10(6), 281. https://doi.org/10.1088/0508-3443/10/6/307
  6. Cai, M. and Kaiser, P.K. (2004), "Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks", Int. J. Rock Mech. Min. Sci., 41, 478-483. https://doi.org/10.1016/j.ijrmms.2004.03.086
  7. Elmo, D. and Stead, D. (2010), "An integrated numerical modelling-discrete fracture network approach applied to the characterisation of rock mass strength of naturally fractured pillars", Rock Mech. Rock Eng., 43, 3-19. https://doiorg.ezproxy.library.ubc.ca/10.1007/s00603-009-0027-3.
  8. Gdoutos, E.E. (2006), Fracture Mechanics: An Introduction, Springer Science & Business Media.
  9. Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Philos. T. Roy. Soc. A, 221, 163-197. https://doi.org/10.1098/rsta.1921.0006
  10. Hamdi, P., Stead, D. and Elmo, D. (2013), "Numerical simulation of damage during laboratory testing on rock using a 3DFEMM/DEM approach", 47th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
  11. Hao, Y., Hao, H. and Chen, G. (2016), "Experimental investigation of the behaviour of spiral steel fibre reinforced concrete beams subjected to drop-weight impact loads", Mater. Struct., 49(1-2), 353-370. https://doi.org/10.1617/s11527-014-0502-5.
  12. Huang, C., Pu, S. and Ding, B. (2018), "An analytical punching shear model of RC slab-column connection based on database", J. Intel. Fuzzy Syst., 35(1), 469-483. https://doi.org/10.3233/JIFS-169604.
  13. Khalilpour, S., BaniAsad, E. and Dehestani, M. (2019), "A review on concrete fracture energy and effective parameters", Cement Concrete Res., 120, 294-321. https://doi.org/10.1016/j.cemconres.2019.03.013.
  14. Klerck, P.A. (2000), "The finite element modelling of discrete fracture in quasi-brittle materials", Ph.D. Thesis, University of Wales, Swansea.
  15. Li, M., Hao, H., Shi, Y. and Hao, Y. (2018), "Specimen shape and size effects on the concrete compressive strength under static and dynamic tests", Constr. Build. Mater., 161, 84-93. https://doi.org/10.1016/j.conbuildmat.2017.11.069.
  16. May, I.M., Chen, Y., Owen, D.R.J., Feng, Y.T. and Thiele, P.J. (2006). "Reinforced concrete beams under dropweight impact loads", Comput. Concrete, 3(2-3), 79-90. https://doi.org/10.12989/cac.2006.3.2_3.079.
  17. Mitelman, A. and Elmo, D. (2014), "Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach", J. Rock Mech. Geotech. Eng., 6(6), 565-573. https://doi.org/10.1016/j.jrmge.2014.09.002.
  18. Munjiza, A. and Antonio, A. (2004), The Combined Finite-discrete Element Method, John Wiley & Sons.
  19. Munjiza, A., Smoljanovic, H., Zivaljic, N., Mihanovic, A., Divic, V., Uzelac, I., Nikolic, Z., Balic, I. and Trogrlic, B. (2019), "Structural applications of the combined finite-discrete element method", Comput. Particle Mech., 4, 1-8. https://doi.org/10.1007/s40571-019-00286-5.
  20. Muttoni, A. (2008), "Punching shear strength of reinforced concrete slabs without transverse reinforcement", ACI Struct. J., 4, 440-450. https://doi.org/10.14359/19858.
  21. Nikolic, Z., Zivaljic, N., Smoljanovic, H. and Balic, I. (2017), "Numerical modelling of reinforced-concrete structures under seismic loading based on the finite element method with discrete inter-element cracks", Earthq. Eng. Struct. Dyn., 46(1), 159-178. https://doi.org/10.1002/eqe.2780.
  22. Owen, D.R.J., Feng, Y.T., de Souza Neto, E.A., Cottrell, M.G., Wang, F., Andrade Pires, F.M. and Yu, J. (2004), "The modelling of multi-fracturing solids and particulate media", Int. J. Numer. Meth. Eng., 60(1), 317-339. https://doi.org/10.1002/nme.964.
  23. Peng, Y., Chen, X., Ying, L., Chen, Y. and Zhang, L. (2019), "Mesoscopic numerical simulation of fracture process and failure mechanism of concrete based on convex aggregate model", Adv. Mater. Sci. Eng., 2019, Article ID 5234327. https://doi.org/10.1155/2019/5234327.
  24. Rockfield (2007), Rockfield Software Ltd., Technium, Kings Road, Prince of Wales Dock, Swansea, SA1 8PH, UK.
  25. Xu, D., Ji, C., Avital, E., Kaliviotis, E., Munjiza, A. and Williams, J. (2017), "An investigation on the aggregation and rheodynamics of human red blood cells using high performance computations", Scientifica, 2017, Article ID 6524156. https://doi.org/10.1155/2017/6524156.
  26. Yan, C., Jiao, Y.Y. and Zheng, H. (2018), "A fully coupled threedimensional hydro-mechanical finite discrete element approach with real porous seepage for simulating 3D hydraulic fracturing", Comput. Geotech., 96, 73-89. https://doi.org/10.1016/j.compgeo.2017.10.008.
  27. Yankelevsky, D.Z., Karinski, Y.S. and Feldgun, V.R. (2020), "Dynamic punching shear failure of a RC flat slab-column connection under a collapsing slab impact", Int. J. Impact Eng., 135, 103401. https://doi.org/10.1016/j.ijimpeng.2019.103401.
  28. Ying, L., Peng, Y. and Kamel, M.M. (2020), "Mesoscopic numerical analysis of dynamic tensile fracture of recycled concrete", Eng. Comput., 37(6), 1899-1922. https://doi.org/10.1108/EC-05-2019-0214.
  29. Ying, L., Peng, Y. and Yang, H. (2020), "Meso-analysis of dynamic compressive behavior of recycled aggregate concrete using bfem", Int. J. Comput. Meth., 17(6), 1950013. https://doi.org/10.1142/S021987621950013.
  30. Zhou, X.Q. and Hao, H. (2008), "Modelling of compressive behaviour of concrete-like materials at high strain rate", Int. J. Solid. Struct., 45(17), 4648-4661. https://doi.org/10.1016/j.ijsolstr.2008.04.002.
  31. Zivaljic, N., Nikolic, Z. and Smoljanovic, H. (2014). "Computational aspects of the combined finite-discrete element method in modelling of plane reinforced concrete structures", Eng. Fract. Mech., 131, 669-686. https://doi.org/10.1016/j.engfracmech.2014.10.017.
  32. Zivaljic, N., Smoljanovic, H. and Nikolic, Z. (2013), "A combined finite-discrete element model for RC structures under dynamic loading", Eng. Comput., 30(7), 982-1010. https://doi.org/10.1108/EC-03-2012-0066.