References
- ASTM C496 (1984), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, Annual Book of ASTM, Standards, Vol. 0.042, Philadelphia.
- Bazant, Z.P. (2000), "Size effect", Int. J. Solid. Struct., 37(1-2), 69-80. https://doi.org/10.1016/S0020-7683(99)00077-3.
- Bazant, Z.P. and Planas, J. (1998), Fracture Size Effect in Concrete and other Quasibrittle Materials, CRC Press, Boca Raton.
- Bazant, Z.P., Kazemi, M.T., Hasegawa, T. and Mazars, J. (1991), "Size effect in Brazilian split-cylinder tests: measurements and fracture analysis", ACI Mater. J., 88(3), 325-332.
- Berenbaum, R. and Brodie, I. (1959), "Measurement of the tensile strength of brittle materials", Brit. J. Appl. Phys., 10(6), 281. https://doi.org/10.1088/0508-3443/10/6/307
- Cai, M. and Kaiser, P.K. (2004), "Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks", Int. J. Rock Mech. Min. Sci., 41, 478-483. https://doi.org/10.1016/j.ijrmms.2004.03.086
- Elmo, D. and Stead, D. (2010), "An integrated numerical modelling-discrete fracture network approach applied to the characterisation of rock mass strength of naturally fractured pillars", Rock Mech. Rock Eng., 43, 3-19. https://doiorg.ezproxy.library.ubc.ca/10.1007/s00603-009-0027-3.
- Gdoutos, E.E. (2006), Fracture Mechanics: An Introduction, Springer Science & Business Media.
- Griffith, A.A. (1921), "The phenomena of rupture and flow in solids", Philos. T. Roy. Soc. A, 221, 163-197. https://doi.org/10.1098/rsta.1921.0006
- Hamdi, P., Stead, D. and Elmo, D. (2013), "Numerical simulation of damage during laboratory testing on rock using a 3DFEMM/DEM approach", 47th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association.
- Hao, Y., Hao, H. and Chen, G. (2016), "Experimental investigation of the behaviour of spiral steel fibre reinforced concrete beams subjected to drop-weight impact loads", Mater. Struct., 49(1-2), 353-370. https://doi.org/10.1617/s11527-014-0502-5.
- Huang, C., Pu, S. and Ding, B. (2018), "An analytical punching shear model of RC slab-column connection based on database", J. Intel. Fuzzy Syst., 35(1), 469-483. https://doi.org/10.3233/JIFS-169604.
- Khalilpour, S., BaniAsad, E. and Dehestani, M. (2019), "A review on concrete fracture energy and effective parameters", Cement Concrete Res., 120, 294-321. https://doi.org/10.1016/j.cemconres.2019.03.013.
- Klerck, P.A. (2000), "The finite element modelling of discrete fracture in quasi-brittle materials", Ph.D. Thesis, University of Wales, Swansea.
- Li, M., Hao, H., Shi, Y. and Hao, Y. (2018), "Specimen shape and size effects on the concrete compressive strength under static and dynamic tests", Constr. Build. Mater., 161, 84-93. https://doi.org/10.1016/j.conbuildmat.2017.11.069.
- May, I.M., Chen, Y., Owen, D.R.J., Feng, Y.T. and Thiele, P.J. (2006). "Reinforced concrete beams under dropweight impact loads", Comput. Concrete, 3(2-3), 79-90. https://doi.org/10.12989/cac.2006.3.2_3.079.
- Mitelman, A. and Elmo, D. (2014), "Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approach", J. Rock Mech. Geotech. Eng., 6(6), 565-573. https://doi.org/10.1016/j.jrmge.2014.09.002.
- Munjiza, A. and Antonio, A. (2004), The Combined Finite-discrete Element Method, John Wiley & Sons.
- Munjiza, A., Smoljanovic, H., Zivaljic, N., Mihanovic, A., Divic, V., Uzelac, I., Nikolic, Z., Balic, I. and Trogrlic, B. (2019), "Structural applications of the combined finite-discrete element method", Comput. Particle Mech., 4, 1-8. https://doi.org/10.1007/s40571-019-00286-5.
- Muttoni, A. (2008), "Punching shear strength of reinforced concrete slabs without transverse reinforcement", ACI Struct. J., 4, 440-450. https://doi.org/10.14359/19858.
- Nikolic, Z., Zivaljic, N., Smoljanovic, H. and Balic, I. (2017), "Numerical modelling of reinforced-concrete structures under seismic loading based on the finite element method with discrete inter-element cracks", Earthq. Eng. Struct. Dyn., 46(1), 159-178. https://doi.org/10.1002/eqe.2780.
- Owen, D.R.J., Feng, Y.T., de Souza Neto, E.A., Cottrell, M.G., Wang, F., Andrade Pires, F.M. and Yu, J. (2004), "The modelling of multi-fracturing solids and particulate media", Int. J. Numer. Meth. Eng., 60(1), 317-339. https://doi.org/10.1002/nme.964.
- Peng, Y., Chen, X., Ying, L., Chen, Y. and Zhang, L. (2019), "Mesoscopic numerical simulation of fracture process and failure mechanism of concrete based on convex aggregate model", Adv. Mater. Sci. Eng., 2019, Article ID 5234327. https://doi.org/10.1155/2019/5234327.
- Rockfield (2007), Rockfield Software Ltd., Technium, Kings Road, Prince of Wales Dock, Swansea, SA1 8PH, UK.
- Xu, D., Ji, C., Avital, E., Kaliviotis, E., Munjiza, A. and Williams, J. (2017), "An investigation on the aggregation and rheodynamics of human red blood cells using high performance computations", Scientifica, 2017, Article ID 6524156. https://doi.org/10.1155/2017/6524156.
- Yan, C., Jiao, Y.Y. and Zheng, H. (2018), "A fully coupled threedimensional hydro-mechanical finite discrete element approach with real porous seepage for simulating 3D hydraulic fracturing", Comput. Geotech., 96, 73-89. https://doi.org/10.1016/j.compgeo.2017.10.008.
- Yankelevsky, D.Z., Karinski, Y.S. and Feldgun, V.R. (2020), "Dynamic punching shear failure of a RC flat slab-column connection under a collapsing slab impact", Int. J. Impact Eng., 135, 103401. https://doi.org/10.1016/j.ijimpeng.2019.103401.
- Ying, L., Peng, Y. and Kamel, M.M. (2020), "Mesoscopic numerical analysis of dynamic tensile fracture of recycled concrete", Eng. Comput., 37(6), 1899-1922. https://doi.org/10.1108/EC-05-2019-0214.
- Ying, L., Peng, Y. and Yang, H. (2020), "Meso-analysis of dynamic compressive behavior of recycled aggregate concrete using bfem", Int. J. Comput. Meth., 17(6), 1950013. https://doi.org/10.1142/S021987621950013.
- Zhou, X.Q. and Hao, H. (2008), "Modelling of compressive behaviour of concrete-like materials at high strain rate", Int. J. Solid. Struct., 45(17), 4648-4661. https://doi.org/10.1016/j.ijsolstr.2008.04.002.
- Zivaljic, N., Nikolic, Z. and Smoljanovic, H. (2014). "Computational aspects of the combined finite-discrete element method in modelling of plane reinforced concrete structures", Eng. Fract. Mech., 131, 669-686. https://doi.org/10.1016/j.engfracmech.2014.10.017.
- Zivaljic, N., Smoljanovic, H. and Nikolic, Z. (2013), "A combined finite-discrete element model for RC structures under dynamic loading", Eng. Comput., 30(7), 982-1010. https://doi.org/10.1108/EC-03-2012-0066.