DOI QR코드

DOI QR Code

두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조 좌굴하중에 미치는 영향

The Effect of Fiber Volume Fraction Non-uniformity in Thickness Direction on the Buckling Load of Cylindrical Composite Lattice Structures

  • Kong, Seung-Taek (Department of Aerospace Engineering, Chungnam National University) ;
  • Jeon, Min-Hyeok (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, In-Gul (Department of Aerospace Engineering, Chungnam National University) ;
  • Lee, Sang-Woo (Defense and Aerospace Division, Hankuk Fiber Group.)
  • 투고 : 2021.02.24
  • 심사 : 2021.03.30
  • 발행 : 2021.04.30

초록

본 논문에서는 필라멘트 와인딩 공정에서 발생하는 두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 좌굴하중에 미치는 영향을 확인하기 위해서 Vasiliev가 제안한 원통형 복합재 격자 구조 좌굴하중 이론식을 변형하여 섬유체적비에 따른 좌굴하중 저하를 확인하였다. 섬유체적비에 따라 격자 구조 리브의 각 층의 두께를 달리하였으며, 혼합법칙을 사용하여 각 층별로 물성치를 다르게 적용하였다. 구조물 크기, 두께, 섬유체적비 평균값을 달리한 유한요소모델에 대한 선형좌굴해석을 수행하였다. 최종적으로 이론식을 사용한 등가모델의 좌굴 하중 계산 결과와 유한요소해석 결과를 비교하여 두께 방향 섬유체적비 불균일이 원통형 복합재 격자 구조의 좌굴하중 저하의 원인이 될 수 있음을 확인하였다.

In this paper, in order to examine the effect of fiber volume fraction non-uniformity in thickness direction on the buckling load of cylindrical composite lattice structures, we modified the equation of buckling load of the cylindrical composite lattice structures proposed by Vasiliev. The thickness of each layer of the rib was varied by fiber volume fraction, and material properties were applied differently by using the rule of mixture. Also, we performed linear buckling analysis by varying the structure size, thickness, and average value of the fiber volume fraction of finite element model. Finally, by comparing the calculation results of the buckling load of the equivalent model using the modified buckling load equation and the results of the finite element analysis, we found that the fiber volume fraction non-uniformity in thickness direction can reduce the buckling load of the cylindrical composite lattice structure.

키워드

참고문헌

  1. Vasiliev, V.V., Barynin, V.A., and Rasin, A.F., "Anisogrid Composite Lattice Structures - Survey of Development and Application," Composite Structures, Vol. 54, 2001, pp. 361-370. https://doi.org/10.1016/S0263-8223(01)00111-8
  2. Morozov, E.V., Lopatin, A.V., and Nesterov, V.A., "Finite-Element Modeling and Buckling Analysis of Anisogrid Composite Lattice Cylindrical Shells," Composite Structures, Vol. 93, 2011, pp. 308-323 https://doi.org/10.1016/j.compstruct.2010.09.014
  3. Terashima, K., Kamita, T., Kimura, G., Uzawa, T., Aoki, T., and Yokozeki, T., "Experimental and Analytical Study of Composite Lattice Structures for Future Japanese Launchers," Proceeding of the 19th International Conference on Composite Materials, Montreal, Canada, 2013, pp. 5373-5382.
  4. Kang, M.S., Jeon, M.H., Kim, I.G., Kim, M.G., Go, E.S., and Lee, S.W., "The Effect of the Fiber Volume Fraction Non-uniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures," Composite Research, Vol. 31, No. 4, 2018, pp. 161-170.
  5. Jeon, M.H., Kang, M.S., Kim, I.G., Kim, M.G., Go, E.S., and Lee, S.W., "Compression and Bending Test for the Stiffness of Composite Lattice Subelement," Composite Research, Vol. 30, No. 6, 2017, pp. 331-337. https://doi.org/10.7234/COMPOSRES.2017.30.6.331
  6. Aoki, T., Yamazaki, H., Yokozeki, T., Terashima, K., and Kamita, T., "Design Constraints of Composite Lattice Cylinders for Aerospace Applications," Proceeding of the 19th International Conference on Composite Materials, Montreal, Canada, 2013.
  7. Kim, Y.H., and Park, J.S., "An Approximate Method for the Buckling Analysis of a Composite Lattice Cylindrical Panel," Proceeding of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference, Kissimmee, Florida, 2018, p. 1991.
  8. Totaro, G., and Gurdal, Z., "Optimal Design of Composite Lattice Shell Structures for Aerospace Applications," Aerospace Science and Technology, Vol. 13, 2009, pp. 157-164. https://doi.org/10.1016/j.ast.2008.09.001