DOI QR코드

DOI QR Code

점진적 파손해석을 이용한 탄소섬유강화 복합재료 볼트 조인트의 파손거동 예측

Prediction of Failure Behavior for Carbon Fiber Reinforced Composite Bolted Joints using Progressive Failure Analysis

  • Yoon, Donghyun (Department of Mechanical Engineering, Chungnam National University) ;
  • Kim, Sangdeok (Department of Mechanical Engineering, Chungnam National University) ;
  • Kim, Jaehoon (Department of Mechanical Engineering, Chungnam National University) ;
  • Doh, Youngdae (HANKUK FIBER GROUP)
  • 투고 : 2020.12.29
  • 심사 : 2021.03.25
  • 발행 : 2021.04.30

초록

복합재료를 활용하여 설계되는 구조물은 각 부품들의 조립, 체결부를 갖게 된다. 이러한 연결 또는 조인트는 구조에서 잠재적으로 취약 부분이 될 수 있다. 복합재료 볼트 조인트의 파손모드는 구조 안전성을 위해 베어링 파손모드로 설계된다. 베어링 파손모드로 파괴되는 복합재료 볼트 조인트의 하중-변위 관계는 초기 파손 발생 후 비선형 거동을 보이며, 점진적인 파손을 보인다. 이러한 비선형적이고 점진적인 복합재료 볼트 조인트의 파손거동을 정확히 예측하기 위해 본 연구에서는 기존의 파손해석 모델에서 전단 손상변수 계산 과정에 수정을 수행하였다. 수정된 파손해석 모델을 이용하여 복합재료 볼트 조인트의 베어링 응력-베어링 변형률 결과를 예측하였으며, 기존 수정되지 않은 해석모델과 비교를 통해 수정된 모델의 유효성을 입증하였다.

Composite structures have components and joints. Theses connections or joints can be potentially weak points in the structure. The failure mode of the composite bolted joint is designed as a bearing failure mode for structural safety. The load-displacement relation exhibits bearing failure mode shows a nonlinear behavior after the initial failure and progressive failure behavior. In order to accurately predict the failure behavior of composite bolted joints, this study modified the shear damage variable calculation process in the existing progressive failure analysis model. The results of the bearing stress-bearing strain of the composite bolted joint were predicted using the modified progressive failure analysis model, and the modified model was verified through comparison with the previous progressive analysis model.

키워드

참고문헌

  1. Dutton, S., Kelly, D., and Baker, A., Composite Materials for Aircraft Structures, American Institute of Aeronautics and Astronautics, 2004.
  2. Hundley, J.M., Hahn, H.T., Yang, J.M., and Facciano, A.B., "Three-dimensional Progressive Failure Analysis of Bolted Titanium-graphite Fiber Metal Laminate Joints," Journal of Composite Materials, Vol. 45, No. 7, 2011, pp. 751-769. https://doi.org/10.1177/0021998310391047
  3. Jeong, K.W., Choi, J.H., and Kweon, J.H., "A Study on the Strength of the Bolted Joint & Pin Joint with Hole Clearance," Composites Research, Vol. 25, No. 6, 2012, pp. 186-190. https://doi.org/10.7234/kscm.2012.25.6.186
  4. Pi, J.W., Jeon, S.B., Lee, G.H., Jo, Y.D., Choi, J.H., and Kweon, J.H., "Joint Design and Strength Evaluation of Composite Air Spoiler for Ship," Composites Research, Vol. 28, No. 4, 2015, pp. 219-225. https://doi.org/10.7234/composres.2015.28.4.219
  5. ASTM D5961/D5961M-13, Standard Test Method for Bearing Response of Polymer Matrix Composite Laminates, ASTM Standard, 2013, pp. 1-31.
  6. Lapczyk, I., and Hurtado, J.A., "Progressive Damage Modeling in Fiber-reinforced Materials," Composites Part A: Applied Science and Manufacturing, Vol. 38, No. 11, 2007, pp. 2333-2341. https://doi.org/10.1016/j.compositesa.2007.01.017
  7. Riccio, A., Di Costanzo, C., Di Gennaro, P., Sellitto, A., and Raimondo, A., "Intra-laminar Progressive Failure Analysis of Composite Laminates with a Large Notch Damage," Engineering Failure Analysis, Vol. 73, 2017, pp. 97-112. https://doi.org/10.1016/j.engfailanal.2016.12.012
  8. Matzenmiller, A., Lubliner, J., and Taylor, R.L., "A Constitutive Model for Anisotropic Damage in Fiber-composites," Mechanics of Materials, Vol. 20, No. 2, 1995, pp. 125-152. https://doi.org/10.1016/0167-6636(94)00053-0
  9. Linde, P., and de Boer, H., "Modelling of Inter-rivet Buckling of Hybrid Composites," Composite Structures, Vol. 73, No. 2, 2006, pp. 221-228. https://doi.org/10.1016/j.compstruct.2005.11.062
  10. Hashin, Z., "Failure Criteria for Unidirectional Fiber Composites," Journal of Applied Mechanics, Vol. 47, No. 2, 1980, pp. 329-334. https://doi.org/10.1115/1.3153664
  11. Tikarrouchine, E., Chatzigeorgiou, G., Praud, F., Piotrowski, B., Chemisky, Y., and Meraghni, F., "Three-dimensional FE2 Method for the Simulation of Non-linear, Rate-dependent Response of Composite Structures," Composite Structures, Vol. 193, 2018, pp. 165-179. https://doi.org/10.1016/j.compstruct.2018.03.072
  12. Nikbakht, M., Toudeshky, H.H., and Mohammadi, B., "Experimental Validation of an Empirical Nonlinear Shear Failure Model for Laminated Composite Materials," Journal of Composite Materials, Vol. 51, No. 16, 2017, pp. 2331-2345. https://doi.org/10.1177/0021998316669992
  13. Lee, C.S., and Lee, J.M., "Development of Progressive Failure Analysis Method for Composite Laminates based on Puck's Failure Criterion-Damage Mechanics Coupling Theories," Journal of the Society of Naval Architects of Korea, Vol. 52, No. 1, 2015, pp. 52-60. https://doi.org/10.3744/SNAK.2015.52.1.52
  14. Kodagali, K., Progressive Failure Analysis of Composite Materials using the Puck Failure Criteria, Doctoral Dissertation, University of South Carolina., USA, 2017.
  15. ASTM D3039/D3039M-14, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, 2014, pp. 1-13.
  16. ASTM D3410/D3410M-16, Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials with Unsupported Gage Section by Shear Loading, ASTM International, 2016, pp. 1-16.
  17. ASTM D5379/D5379M-12, Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method, ASTM International, 2012, pp. 1-14.
  18. ASTM Standard D5528-13, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-reinforced Polymer Matrix Composites, ASTM International, 2013, pp. 1-13.
  19. ASTM Standard D7905/D7905M-13, Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-reinforced Polymer Matrix Composites, ASTM International, 2013, pp. 1-18.
  20. Pinho, S.T., Robinson, P., and Iannucci, L., "Fracture Toughness of the Tensile and Compressive Fibre Failure Modes in Laminated Composites," Composites Science and Technology, Vol. 66, No. 13, 2006, pp. 2069-2079. https://doi.org/10.1016/j.compscitech.2005.12.023
  21. Laffan, M.J., Pinho, S.T., Robinson, P., and Iannucci, L., "Measurement of the in situ Ply Fracture Toughness Associated with Mode I Fibre Tensile Failure in FRP. Part I: Data Reduction," Composites Science and Technology, Vol. 70, No. 4, 2010, pp. 606-613. https://doi.org/10.1016/j.compscitech.2009.12.016
  22. Laffan, M.J., Pinho, S.T., Robinson, P., and Iannucci, L., "Measurement of the in situ Ply Fracture Toughness Associated with Mode I Fibre Tensile Failure in FRP.Part II: Size and Lay-up Effects", Composites Science and Technology, Vol. 70, No. 4, 2010, pp. 614-621. https://doi.org/10.1016/j.compscitech.2009.12.011
  23. Cann, M.T., Adams, D.O., and Schneider, C.L., "Characterization of Fiber Volume Fraction Gradients in Composite Laminates," Journal of Composite Materials, Vol. 42, No. 5, 2008, pp. 447-466. https://doi.org/10.1177/0021998307086206
  24. Kang, M.S., Jeon, M.H., Kim, I.G., Kim, M.G., Go, E.S., and Lee, S.W., "The Effect of the Fiber Volume Fraction Non-uniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures," Composites Research, Vol. 31, No. 4, 2018, pp. 161-170.
  25. Shigley, J.E., Shigley's Mechanical Engineering Design, Vol. 8., McGraw-Hill, New York, NY, USA, 2008.
  26. Herrington, P.D., and Sabbaghian, M., "Factors Affecting the Friction Coefficients between Metallic Washers and Composite Surfaces," Composites, Vol. 22, No. 6, 1991, pp. 418-424. https://doi.org/10.1016/0010-4361(91)90198-P