DOI QR코드

DOI QR Code

The Detection of Well-known and Unknown Brands' Products with Manipulated Reviews Using Sentiment Analysis

  • Olga Chernyaeva (Pusan National University) ;
  • Eunmi Kim (Kookmin Information Technology Research Institute in Kookmin University) ;
  • Taeho Hong (Management Information Systems at College of Business Administration, Pusan National University)
  • Received : 2021.06.19
  • Accepted : 2021.09.14
  • Published : 2021.12.31

Abstract

The detection of products with manipulated reviews has received widespread research attention, given that a truthful, informative, and useful review helps to significantly lower the search effort and cost for potential customers. This study proposes a method to recognize products with manipulated online customer reviews by examining the sequence of each review's sentiment, readability, and rating scores by product on randomness, considering the example of a Russian online retail site. Additionally, this study aims to examine the association between brand awareness and existing manipulation with products' reviews. Therefore, we investigated the difference between well-known and unknown brands' products online reviews with and without manipulated reviews based on the average star rating and the extremely positive sentiment scores. Consequently, machine learning techniques for predicting products are tested with manipulated reviews to determine a more useful one. It was found that about 20% of all product reviews are manipulated. Among the products with manipulated reviews, 44% are products of well-known brands, and 56% from unknown brands, with the highest prediction performance on deep neural network.

Keywords

Acknowledgement

This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (2019-0-01343, Regional strategic industry convergence security core talent training business).

References

  1. Aaker, D. A., and Equity, M. B. (1991). Capitalizing on the value of a brand name. New York, 28(1), 35-37. 
  2. Ailawadi, K. L., Lehmann, D. R., and Neslin, S. A. (2003). Revenue premium as an outcome measure of brand equity. Journal of Marketing, 67(4), 1-17.  https://doi.org/10.1509/jmkg.67.4.1.18688
  3. Allison, R. I., and Uhl, K. P. (1964). Influence of beer brand identification on taste perception. Journal of Marketing Research, 1(3), 36-39.  https://doi.org/10.1177/002224376400100305
  4. Almatarneh, S., and Gamallo, P. (2018). A lexicon based method to search for extreme opinions. PloS One, 13(5), e0197816. 
  5. Al-Natour, S., and Turetken, O. (2020). A comparative assessment of sentiment analysis and star ratings for consumer reviews. International Journal of Information Management, 54, 102132. 
  6. Baltas, G., and Saridakis, C. (2010). Measuring brand equity in the car market: A hedonic price analysis. Journal of the Operational Research Society, 61(2), 284-293.  https://doi.org/10.1057/jors.2008.159
  7. Barbado, R., Araque, O., and Iglesias, C. A. (2019). A framework for fake review detection in online consumer electronics retailers. Information Processing & Management, 56(4), 1234-1244.  https://doi.org/10.1016/j.ipm.2019.03.002
  8. Cao, Q., Duan, W., and Gan, Q. (2011). Exploring determinants of voting for the "helpfulness" of online user reviews: A text mining approach. Decision Support Systems, 50(2), 511-521.  https://doi.org/10.1016/j.dss.2010.11.009
  9. Chen, L. S., and Lin, J. Y. (2013). A study on review manipulation classification using decision tree. In 2013 10th International Conference on Service Systems and Service Management, IEEE, 680-685. 
  10. Chirita, P. A., Diederich, J., and Nejdl, W. (2005). MailRank: Using ranking for spam detection. In Proceedings of the 14th ACM International Conference on Information and Knowledge Management, 373-380. 
  11. Coleman, M., and Liau, T. L. (1975). A computer readability formula designed for machine scoring. Journal of Applied Psychology, 60(2), 283-284.  https://doi.org/10.1037/h0076540
  12. Correa, D. J., Milano, L., Kwon, C. S., Jette, N., Dlugos, D., Harte-Hargrove, L., Pugh, M. J., Smith, J. K., and Moshe, S. L. (2020). Quantitative readability analysis of websites providing information on traumatic brain injury and epilepsy: A need for clear communication. Epilepsia, 61(3), 528-538.  https://doi.org/10.1111/epi.16446
  13. Dabbous, A., and Barakat, K. A. (2020). Bridging the online offline gap: Assessing the impact of brands' social network content quality on brand awareness and purchase intention. Journal of Retailing and Consumer Services, 53, 101966. 
  14. Dave, K., Lawrence, S., and Pennock, D. M. (2003). Mining the peanut gallery: Opinion extraction and semantic classification of product reviews. In Proceedings of the 12th International Conference on World Wide Web, 519-528. 
  15. Dellarocas, C. (2003). The digitization of word of mouth: Promise and challenges of online feedback mechanisms. Management Science, 49(10), 1407-1424.  https://doi.org/10.1287/mnsc.49.10.1407.17308
  16. Du, H. S., Xu, J., Tang, H., and Jiang, R. (2020). Repurchase intention in online knowledge service: The brand awareness perspective. Journal of Computer Information Systems, 1-12. 
  17. Eslami, S. P., Ghasemaghaei, M., and Hassanein, K. (2018). Which online reviews do consumers find most helpful? A multi-method investigation. Decision Support Systems, 113, 32-42.  https://doi.org/10.1016/j.dss.2018.06.012
  18. Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., and Ghosh, R. (2013). Exploiting burstiness in reviews for review spammer detection. In Proceedings of the International AAAI Conference on Web and Social Media, 7(1). 
  19. Fombrun, C. (2012). Corporate reputation: Definitions, antecedents, consequences. Oxford, UK: Oxford University Press. 
  20. Foroudi, P. (2019). Influence of brand signature, brand awareness, brand attitude, brand reputation on hotel industry's brand performance. International Journal of Hospitality Management, 76, 271-285.  https://doi.org/10.1016/j.ijhm.2018.05.016
  21. Graciola, A. P., De Toni, D., Milan, G. S., and Eberle, L. (2020). Mediated-moderated effects: High and low store image, brand awareness, perceived value from mini and supermarkets retail stores. Journal of Retailing and Consumer Services, 55, 102117. 
  22. Harmon, A. (2004). Amazon glitch unmasks war of reviewers. The New York Times, 14(8). 
  23. Hatch, M. J., and Schultz, M. (1997). Relations between organizational culture, identity and image. European Journal of Marketing, 31(5/6), 356-365.  https://doi.org/10.1108/eb060636
  24. Hennig-Thurau, T., Gwinner, K. P., Walsh, G., and Gremler, D. D. (2004). Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the internet? Journal of Interactive Marketing, 18(1), 38-52.  https://doi.org/10.1002/dir.10073
  25. Hlee, S., Lee, H., Koo, C., and Chung, N. (2021). Fake reviews or not: Exploring the relationship between time trend and online restaurant reviews. Telematics and Informatics, 59, 101560. 
  26. Hu, N., Bose, I., Gao, Y., and Liu, L. (2011). Manipulation in digital word-of-mouth: A reality check for book reviews. Decision Support Systems, 50(3), 627-635.  https://doi.org/10.1016/j.dss.2010.08.013
  27. Hu, N., Bose, I., Koh, N. S., and Liu, L. (2012). Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decision Support Systems, 52(3), 674-684.  https://doi.org/10.1016/j.dss.2011.11.002
  28. Hu, N., Liu, L., and Sambamurthy, V. (2011). Fraud detection in online consumer reviews. Decision Support Systems, 50(3), 614-626.  https://doi.org/10.1016/j.dss.2010.08.012
  29. Huang, R., and Sarigollu, E. (2014). How brand awareness relates to market outcome, brand equity, and the marketing mix. In Fashion branding and consumer behaviors. Springer, New York, NY. 
  30. Ivanov, V. V., Solnyshkina, M. I., and Solovyev, V. D. (2018). Efficiency of text readability features in Russian academic texts. In Komp'juternaja Lingvistika I Intellektual'Nye Tehnologii, 284-293. 
  31. Keller, K. L., Parameswaran, M. G., and Jacob, I. (2011). Strategic brand management: Building, measuring, and managing brand equity. Pearson Education India. 
  32. Kim, B., Park, J., and Suh, J. (2020). Transparency and accountability in AI decision support: Explaining and visualizing convolutional neural networks for text information. Decision Support Systems, 134, 113302. 
  33. Kim, T., Kim, D. S., Kim, D., and Kim, J. W. (2019). Multidimensional analysis of consumers' opinions from online product reviews. Asia Pacific Journal of Information Systems, 29(4), 838-855. 
  34. Kincaid, J. P., and Delionbach, L. J. (1973). Validation of the automated readability index: A follow-up. Human Factors, 15(1), 17-20.  https://doi.org/10.1177/001872087301500103
  35. Kincaid, J. P., Fishburne Jr, R. P., Rogers, R. L., and Chissom, B. S. (1975). Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel. Naval Technical Training Command Millington TN Research Branch. 
  36. Lak, P., and Turetken, O. (2014). Star ratings versus sentiment analysis-a comparison of explicit and implicit measures of opinions. In 2014 47th Hawaii International Conference on System Sciences, IEEE, 796-805. 
  37. Laposhina, N., Veselovskaya, V., Lebedeva, M. U., and Kupreshchenko, O. F. (2018). Automated text readability assessment for Russian second language learners. In Komp'juternaja Lingvistika i Intellektual'nye Tehnologii, 403-413. 
  38. Lee, J. H., Park, J. S., Kim, H. M., and Park, J. H. (2013). Investigating the influence of perceived usefulness and self-efficacy on online WOM adoption based on cognitive dissonance theory: Stick to your own preference vs. follow what others said. Asia Pacific Journal of Information Systems, 23(3), 131-154.  https://doi.org/10.14329/apjis.2013.23.3.131
  39. Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N., and Nandi, A. K. (2020). Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138, 106587. 
  40. Li, H., Meng, F., and Pan, B. (2020). How does review disconfirmation influence customer online review behavior? A mixed-method investigation. International Journal of Contemporary Hospitality Management, 32(11), 3685-3703.  https://doi.org/10.1108/IJCHM-03-2020-0234
  41. Li, L., Ren, G., Hong, T., and Yang, S. B. (2019). Exploring simultaneous presentation in online restaurant reviews: An analysis of textual and visual content. Asia Pacific Journal of Information Systems, 29(2), 181-202.  https://doi.org/10.14329/apjis.2019.29.2.181
  42. Lim, E. P., Nguyen, V. A., Jindal, N., Liu, B., and Lauw, H. W. (2010). Detecting product review spammers using rating behaviors. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, 939-948. 
  43. Macdonald, E. K., and Sharp, B. M. (2000). Brand awareness effects on consumer decision making for a common, repeat purchase product: A replication. Journal of Business Research, 48(1), 5-15.  https://doi.org/10.1016/S0148-2963(98)00070-8
  44. Mayzlin, D., Dover, Y., and Chevalier, J. (2014). Promotional reviews: An empirical investigation of online review manipulation. American Economic Review, 104(8), 2421-55.  https://doi.org/10.1257/aer.104.8.2421
  45. Noekhah, S., Binti Salim, N., and Zakaria, N. H. (2020). Opinion spam detection: Using multi-iterative graph-based model. Information Processing & Management, 57(1), 102140. 
  46. Pang, B., Lee, L., and Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. arXiv preprint cs/0205070. 
  47. Park, J. W., Cho, E. Y., and Kim, H. W. (2016). Examining context-specific social media marketing strategies. Asia Pacific Journal of Information Systems, 26(1), 143-162.  https://doi.org/10.14329/apjis.2016.26.1.143
  48. Peng, Q., and Zhong, M. (2014). Detecting spam review through sentiment analysis. JSW, 9(8), 2065-2072. 
  49. Press, S. J., and Wilson, S. (1978). Choosing between logistic regression and discriminant analysis. Journal of the American Statistical Association, 73(364), 699-705.  https://doi.org/10.1080/01621459.1978.10480080
  50. Safavian, S. R., and Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660-674.  https://doi.org/10.1109/21.97458
  51. Salehan, M., and Kim, D. J. (2016). Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics. Decision Support Systems, 81, 30-40.  https://doi.org/10.1016/j.dss.2015.10.006
  52. Senter, R. J., and Smith, E. A. (1967). Automated readability index. Cincinnati Univ Oh. 
  53. Shamsudin, M. F., Hassan, S., Ishak, M. F., and Ahmad, Z. (2020). Study of purchase intention towards skin care products based on brand awareness and brand association. Journal of Critical Reviews, 7(16), 990-996. 
  54. Shan, G., Zhou, L., and Zhang, D. (2021). From conflicts and confusion to doubts: Examining review inconsistency for fake review detection. Decision Support Systems, 144, 113513. 
  55. Shmueli, G., Bruce, P. C., Yahav, I., Patel, N. R., and Lichtendahl Jr, K. C. (2017). Data mining for business analytics: Concepts, techniques, and applications in R. John Wiley & Sons. 
  56. Solnyshkina, M. I., Harkova, E. V., and Kazachkova, M. B. (2020). The structure of cross-linguistic differences: Meaning and context of 'readability' and its Russian equivalent 'chitabelnost'. Journal of Language and Education, 6(1), 103-119.  https://doi.org/10.17323/jle.2020.7176
  57. Spool, J. M., Scanlon, T., Snyder, C., Schroeder, W., and DeAngelo, T. (1999). Web site usability: A designe''s guide. Morgan Kaufmann. 
  58. Susan, M. M., and David, S. (2010). What makes a helpful online review? A study of customer reviews on amazon. com. MIS Quarterly, 34(1), 185-200.  https://doi.org/10.2307/20721420
  59. Tian, Y., Mirzabagheri, M., Tirandazi, P., and Bamakan, S. M. H. (2020). A non-convex semi-supervised approach to opinion spam detection by ramp-one class SVM. Information Processing & Management, 57(6), 102381. 
  60. Tokajian, C., and Irshaidat, R. (2020). A qualitative study of advertising art: Awareness and adoption of art in advertisements within a jordanian context. Journal of Promotion Management, 27(3), 359-398.  https://doi.org/10.1080/10496491.2020.1838023
  61. Wu, Y., Ngai, E. W., Wu, P., and Wu, C. (2020). Fake online reviews: Literature review, synthesis, and directions for future research. Decision Support Systems, 132, 113280.