References
- Bae, S. U., Kwag, D. G., and Park, E. Y. (2015). The study of the aviation industrial technology convergence through patent analysis. Journal of the Korea convergence Society, 6(5), 219-225. https://doi.org/10.15207/JKCS.2015.6.5.219
- Bernal, P., Maicas, J. P., and Vargas, P. (2019). Exploration, exploitation and innovation performance: disentangling the evolution of industry. Industry and Innovation, 26(3), 295-320. https://doi.org/10.1080/13662716.2018.1465813
- Bhattacharya, M., and Bloch, H. (2004). Determinants of innovation. Small Business Economics, 22(2), 155-162. https://doi.org/10.1023/B:SBEJ.0000014453.94445.de
- Bonchi, F., Castillo, C., Gionis, A., and Jaimes, A. (2011). Social network analysis and mining for business applications. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1-37.
- Boschma, R. A., and Ter Wal, A. L. (2007). Knowledge networks and innovative performance in an industrial district: The case of a footwear district in the South of Italy. Industry and Innovation, 14(2), 177-199. https://doi.org/10.1080/13662710701253441
- Bruck, P., Rethy, I., Szente, J., Tobochnik, J., and Erdi, P. (2016). Recognition of emerging technology trends: class-selective study of citations in the US Patent Citation Network. Scientometrics, 107(3), 1465-1475. https://doi.org/10.1007/s11192-016-1899-0
- Chang, S. B., Lai, K. K., and Chang, S. M. (2009). Exploring technology diffusion and classification of business methods: Using the patent citation network. Technological Forecasting and Social Change, 76(1), 107-117. https://doi.org/10.1016/j.techfore.2008.03.014
- Cho, T. S., and Shih, H. Y. (2011). Patent citation network analysis of core and emerging technologies in Taiwan: 1997-2008. Scientometrics, 89(3), 795-811. https://doi.org/10.1007/s11192-011-0457-z
- Choe, H., Lee, D. H., Kim, H. D., and Seo, I. W. (2016). Structural properties and inter-organizational knowledge flows of patent citation network: The case of organic solar cells. Renewable and Sustainable Energy Reviews, 55, 361-370. https://doi.org/10.1016/j.rser.2015.10.150
- Davenport, T., and Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94.
- De Bruyn, A., Viswanathan, V., Beh, Y. S., Brock, J. K. U., and von Wangenheim, F. (2020). Artificial intelligence and marketing: Pitfalls and opportunities. Journal of Interactive Marketing, 51, 91-105. https://doi.org/10.1016/j.intmar.2020.04.007
- Erdi, P., Makovi, K., Somogyvari, Z., Strandburg, K., Tobochnik, J., Volf, P., and Zalanyi, L. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95(1), 225-242. https://doi.org/10.1007/s11192-012-0796-4
- Greve, H. R. (2007). Exploration and exploitation in product innovation. Industrial and Corporate Change, 16(5), 945-975.
- Grigoriou, K., and Rothaermel, F. T. (2017). Organizing for knowledge generation: Internal knowledge networks and the contingent effect of external knowledge sourcing. Strategic Management Journal, 38(2), 395-414.
- Guan, J., and Liu, N. (2016). Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Research Policy, 45(1), 97-112. https://doi.org/10.1016/j.respol.2015.08.002
- Haefner, N., Wincent, J., Parida, V., and Gassmann, O. (2020). Artificial intelligence and innovation management: A review, framework, and research agenda. Technological Forecasting and Social Change, 162, 120392.
- Holmes, W., Bialik, M., and Fadel, C. (2019). Artificial intelligence in education. Boston: Center for Curriculum Redesign.
- Holzinger, A., Langs, G., Denk, H., Zatloukal, K., and Muller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4), e1312.
- Huang, M. H., and Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30-50. https://doi.org/10.1007/s11747-020-00749-9
- Jung, S. H., Gu, G. J., Kim, D., and Kim, J. W. (2020). Predicting stock prices based on online news content and technical indicators by combinatorial analysis using CNN and LSTM with self-attention. Asia Pacific Journal of Information Systems, 30(4), 719-740. https://doi.org/10.14329/apjis.2020.30.4.719
- Kim, D. H., Lee, H., and Kwak, J. (2017). Standards as a driving force that influences emerging technological trajectories in the converging world of the Internet and things: An investigation of the M2M/IoT patent network. Research Policy, 46(7), 1234-1254. https://doi.org/10.1016/j.respol.2017.05.008
- Kim, E., Cho, Y., and Kim, W. (2014). Dynamic patterns of technological convergence in printed electronics technologies: Patent citation network. Scientometrics, 98(2), 975-998. https://doi.org/10.1007/s11192-013-1104-7
- Kim, H. S., and Lee, S. (2019). Multi-Purpose Hybrid Recommendation System on Artificial Intelligence to Improve Telemarketing Performance. Asia Pacific Journal of Information Systems, 29(4), 752-770. https://doi.org/10.14329/apjis.2019.29.4.752
- Lai, H. C., and Weng, C. S. (2016). Exploratory innovation and exploitative innovation in the phase of technological discontinuity: the perspective on patent data for two IC foundries. Asian Journal of Technology Innovation, 24(1), 41-54. https://doi.org/10.1080/19761597.2016.1151188
- Lanjouw, J., and Schankerman, M. (1999). The quality of ideas: Measuring innovation with multiple indicators. Working Papers, NBER.
- Le, P. B., and Lei, H. (2019). Determinants of innovation capability: the roles of transformational leadership, knowledge sharing and perceived organizational support. Journal of Knowledge Management 23(3), 527-547.
- Lee, J., Davari, H., Singh, J., and Pandhare, V. (2018). Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20-23.
- Lee, R., Lee, J. H., and Garrett, T. C. (2019). Synergy effects of innovation on firm performance. Journal of Business Research, 99, 507-515.
- Lee, S., and Kim, W. (2017). The knowledge network dynamics in a mobile ecosystem: A patent citation analysis. Scientometrics, 111(2), 717-742. https://doi.org/10.1007/s11192-017-2270-9
- Lee, S., Kim, W., Lee, H., and Jeon, J. (2016). Identifying the structure of knowledge networks in the US mobile ecosystems: Patent citation analysis. Technology Analysis & Strategic Management, 28(4), 411-434. https://doi.org/10.1080/09537325.2015.1096336
- Li, X., Chen, H., Huang, Z., and Roco, M. C. (2007). Patent citation network in nanotechnology (1976-2004). Journal of Nanoparticle Research, 9(3), 337-352. https://doi.org/10.1007/s11051-006-9194-2
- Love, J. H., and Roper, S. (1999). The determinants of innovation: R & D, technology transfer and networking effects. Review of Industrial Organization, 15(1), 43-64. https://doi.org/10.1023/A:1007757110963
- Ma, D., Zhang, Y. R., and Zhang, F. (2020). The influence of network positions on exploratory innovation: An empirical evidence from china's patent analysis. Science, Technology and Society, 25(1), 184-207. https://doi.org/10.1177/0971721819890045
- Maddox, T. M., Rumsfeld, J. S., and Payne, P. R. (2019). Questions for artificial intelligence in health care. Jama, 321(1), 31-32. https://doi.org/10.1001/jama.2018.18932
- Marketsandmarkets (2018). Artificial Intelligence Market worth $190.61 billion by 2025 with a Growing CAGR of 36.6%. https://www.marketsandmarkets.com/PressReleases/artificial-intelligence.asp (accessed on 25 February 2020).
- Patricio, D. I., and Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, 153, 69-81. https://doi.org/10.1016/j.compag.2018.08.001
- Phelps, C., Heidl, R., and Wadhwa, A. (2012). Knowledge, networks, and knowledge networks: A review and research agenda. Journal of Management, 38(4), 1115-1166. https://doi.org/10.1177/0149206311432640
- Powell, W. W., and Snellman, K. (2004). The knowledge economy. Annual Review of Sociology, 30, 199-220. https://doi.org/10.1146/annurev.soc.29.010202.100037
- Powell, W. W., Packalen, K., and Whittington, K. (2010). Organizational and institutional genesis and change: The emergence and transformation of the commercial life sciences. The Emergence of Organizations and Markets, 379-433.
- Purushu, P., Melcher, N., Bhagwat, B., and Woo, J. (2018). Predictive analysis of financial fraud detection using Azure and Spark ML. Asia Pacific Journal of Information Systems, 28(4), 308-319. https://doi.org/10.14329/apjis.2018.28.4.308
- Quan, X. I., and Sanderson, J. (2018). Understanding the artificial intelligence business ecosystem. IEEE Engineering Management Review, 46(4), 22-25.
- Ramesh, A. N., Kambhampati, C., Monson, J. R., and Drew, P. J. (2004). Artificial intelligence in medicine. Annals of The Royal College of Surgeons of England, 86(5), 334.
- Rogers, E. M. (2010). Diffusion of Innovations. Simon and Schuster.
- Romijn, H., and Albaladejo, M. (2002). Determinants of innovation capability in small electronics and software firms in southeast England. Research Policy, 31(7), 1053-1067. https://doi.org/10.1016/S0048-7333(01)00176-7
- Rousseau, M. B., Mathias, B. D., Madden, L. T., and Crook, T. R. (2016). Innovation, firm performance, and appropriation: A meta-analysis. International Journal of Innovation Management, 20(03), 1650033.
- Smith, M. J. (2020). Getting value from artificial intelligence in agriculture. Animal Production Science, 60(1), 46-54. https://doi.org/10.1071/AN18522
- Strong, A. I. (2016). Applications of artificial intelligence & associated technologies. Proceeding of International Conference on Emerging Technologies in Engineering, Biomedical, Management and Science, 5-6.
- Takano, Y., Mejia, C., and Kajikawa, Y. (2016). Unconnected component inclusion technique for patent network analysis: Case study of Internet of Things-related technologies. Journal of Informetrics, 10(4), 967-980. https://doi.org/10.1016/j.joi.2016.05.004
- Timms, M. J. (2016). Letting artificial intelligence in education out of the box: Educational cobots and smart classrooms. International Journal of Artificial Intelligence in Education, 26(2), 701-712.
- Tsai, W. (2001). Knowledge transfer in intraorganizational networks: Effects of network position and absorptive capacity on business unit innovation and performance. Academy of Management Journal, 44(5), 996-1004. https://doi.org/10.2307/3069443
- Tseng, C. Y., and Ting, P. H. (2013). Patent analysis for technology development of artificial intelligence: A country-level comparative study. Innovation, 15(4), 463-475. https://doi.org/10.5172/impp.2013.15.4.463
- Van de Ven, A. H. (1986). Central problems in the management of innovation. Management Science, 32(5), 590-607. https://doi.org/10.1287/mnsc.32.5.590
- Wasserman, S., and Faust, K. (1994). Social network analysis: Methods and Applications (Vol. 8). Cambridge University Press.
- Wen, J., Qualls, W. J., and Zeng, D. (2021). To explore or exploit: The influence of inter-firm R&D network diversity and structural holes on innovation outcomes. Technovation, 100, 102178.
- Yang, G. C., Li, G., Li, C-Y., Zhao, Y-H., Zhang, J., Liu, T., Chen, D-Z., and Huang, M-H. (2015). Using the comprehensive patent citation network (CPC) to evaluate patent value. Scientometrics, 105(3), 1319-1346. https://doi.org/10.1007/s11192-015-1763-7
- Yu, K. H., and Kohane, I. S. (2019). Framing the challenges of artificial intelligence in medicine. BMJ Quality & Safety, 28(3), 238-241.
- Zaheer, A., and Bell, G. G. (2005). Benefiting from network position: firm capabilities, structural holes, and performance. Strategic Management Journal, 26(9), 809-825. https://doi.org/10.1002/smj.482
- Zaltman, G., Duncan, R., and Holbek, J. (1973). Innovations and Organizations. New York; Toronto: Wiley.