DOI QR코드

DOI QR Code

A Comparison of Structural Position and Exploitative Innovation Based on a Patent Citation Network of the Top 100 Digital Companies

  • Hyun Mo Kang (AI Management Research Center, Kyung Hee University) ;
  • Il Young Choi (Graduate School of Business Administration, Kyung Hee University) ;
  • Jae Kyeong Kim (School of Management, Kyung Hee University) ;
  • Hyun Joo Shin (Department of Business Administration, Graduate School, Kyung Hee University)
  • Received : 2021.04.30
  • Accepted : 2021.08.06
  • Published : 2021.09.30

Abstract

Knowledge drives business innovation. However, even if companies have the same knowledge element in the business ecosystem, innovation performance varies depending on the structural position of the technical knowledge network. This study investigated whether there is a difference in exploitative innovation according to the structural position of the AI technical knowledge network. We collected patents from the top 100 digital companies registered with the US Patent Office from 2015 to 2019 and classified the companies into knowledge producer-based brokers, knowledge absorber-based brokers, knowledge absorbers, and knowledge producers from the perspective of knowledge creation and flow. The analysis results are as follows. First, a few of the top 100 digital companies disseminate, absorb, and mediate knowledge, while the majority do not. Second, exploitative innovation is the largest, in the order of knowledge producer, knowledge absorber-based broker, knowledge absorber, and knowledge producer-based broker. Finally, patents for industrial intelligence occupy a large proportion, and knowledge producers are leading exploitative innovation. Therefore, latecomers need to expand their resources and capabilities by citing patents owned by leading companies and converge with existing industries into AI-based industries.

Keywords

References

  1. Bae, S. U., Kwag, D. G., and Park, E. Y. (2015). The study of the aviation industrial technology convergence through patent analysis. Journal of the Korea convergence Society, 6(5), 219-225. https://doi.org/10.15207/JKCS.2015.6.5.219
  2. Bernal, P., Maicas, J. P., and Vargas, P. (2019). Exploration, exploitation and innovation performance: disentangling the evolution of industry. Industry and Innovation, 26(3), 295-320. https://doi.org/10.1080/13662716.2018.1465813
  3. Bhattacharya, M., and Bloch, H. (2004). Determinants of innovation. Small Business Economics, 22(2), 155-162. https://doi.org/10.1023/B:SBEJ.0000014453.94445.de
  4. Bonchi, F., Castillo, C., Gionis, A., and Jaimes, A. (2011). Social network analysis and mining for business applications. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1-37.
  5. Boschma, R. A., and Ter Wal, A. L. (2007). Knowledge networks and innovative performance in an industrial district: The case of a footwear district in the South of Italy. Industry and Innovation, 14(2), 177-199. https://doi.org/10.1080/13662710701253441
  6. Bruck, P., Rethy, I., Szente, J., Tobochnik, J., and Erdi, P. (2016). Recognition of emerging technology trends: class-selective study of citations in the US Patent Citation Network. Scientometrics, 107(3), 1465-1475. https://doi.org/10.1007/s11192-016-1899-0
  7. Chang, S. B., Lai, K. K., and Chang, S. M. (2009). Exploring technology diffusion and classification of business methods: Using the patent citation network. Technological Forecasting and Social Change, 76(1), 107-117. https://doi.org/10.1016/j.techfore.2008.03.014
  8. Cho, T. S., and Shih, H. Y. (2011). Patent citation network analysis of core and emerging technologies in Taiwan: 1997-2008. Scientometrics, 89(3), 795-811. https://doi.org/10.1007/s11192-011-0457-z
  9. Choe, H., Lee, D. H., Kim, H. D., and Seo, I. W. (2016). Structural properties and inter-organizational knowledge flows of patent citation network: The case of organic solar cells. Renewable and Sustainable Energy Reviews, 55, 361-370. https://doi.org/10.1016/j.rser.2015.10.150
  10. Davenport, T., and Kalakota, R. (2019). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6(2), 94.
  11. De Bruyn, A., Viswanathan, V., Beh, Y. S., Brock, J. K. U., and von Wangenheim, F. (2020). Artificial intelligence and marketing: Pitfalls and opportunities. Journal of Interactive Marketing, 51, 91-105. https://doi.org/10.1016/j.intmar.2020.04.007
  12. Erdi, P., Makovi, K., Somogyvari, Z., Strandburg, K., Tobochnik, J., Volf, P., and Zalanyi, L. (2013). Prediction of emerging technologies based on analysis of the US patent citation network. Scientometrics, 95(1), 225-242. https://doi.org/10.1007/s11192-012-0796-4
  13. Greve, H. R. (2007). Exploration and exploitation in product innovation. Industrial and Corporate Change, 16(5), 945-975.
  14. Grigoriou, K., and Rothaermel, F. T. (2017). Organizing for knowledge generation: Internal knowledge networks and the contingent effect of external knowledge sourcing. Strategic Management Journal, 38(2), 395-414.
  15. Guan, J., and Liu, N. (2016). Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Research Policy, 45(1), 97-112. https://doi.org/10.1016/j.respol.2015.08.002
  16. Haefner, N., Wincent, J., Parida, V., and Gassmann, O. (2020). Artificial intelligence and innovation management: A review, framework, and research agenda. Technological Forecasting and Social Change, 162, 120392.
  17. Holmes, W., Bialik, M., and Fadel, C. (2019). Artificial intelligence in education. Boston: Center for Curriculum Redesign.
  18. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., and Muller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4), e1312.
  19. Huang, M. H., and Rust, R. T. (2021). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49, 30-50. https://doi.org/10.1007/s11747-020-00749-9
  20. Jung, S. H., Gu, G. J., Kim, D., and Kim, J. W. (2020). Predicting stock prices based on online news content and technical indicators by combinatorial analysis using CNN and LSTM with self-attention. Asia Pacific Journal of Information Systems, 30(4), 719-740. https://doi.org/10.14329/apjis.2020.30.4.719
  21. Kim, D. H., Lee, H., and Kwak, J. (2017). Standards as a driving force that influences emerging technological trajectories in the converging world of the Internet and things: An investigation of the M2M/IoT patent network. Research Policy, 46(7), 1234-1254. https://doi.org/10.1016/j.respol.2017.05.008
  22. Kim, E., Cho, Y., and Kim, W. (2014). Dynamic patterns of technological convergence in printed electronics technologies: Patent citation network. Scientometrics, 98(2), 975-998. https://doi.org/10.1007/s11192-013-1104-7
  23. Kim, H. S., and Lee, S. (2019). Multi-Purpose Hybrid Recommendation System on Artificial Intelligence to Improve Telemarketing Performance. Asia Pacific Journal of Information Systems, 29(4), 752-770. https://doi.org/10.14329/apjis.2019.29.4.752
  24. Lai, H. C., and Weng, C. S. (2016). Exploratory innovation and exploitative innovation in the phase of technological discontinuity: the perspective on patent data for two IC foundries. Asian Journal of Technology Innovation, 24(1), 41-54. https://doi.org/10.1080/19761597.2016.1151188
  25. Lanjouw, J., and Schankerman, M. (1999). The quality of ideas: Measuring innovation with multiple indicators. Working Papers, NBER.
  26. Le, P. B., and Lei, H. (2019). Determinants of innovation capability: the roles of transformational leadership, knowledge sharing and perceived organizational support. Journal of Knowledge Management 23(3), 527-547.
  27. Lee, J., Davari, H., Singh, J., and Pandhare, V. (2018). Industrial Artificial Intelligence for industry 4.0-based manufacturing systems. Manufacturing Letters, 18, 20-23.
  28. Lee, R., Lee, J. H., and Garrett, T. C. (2019). Synergy effects of innovation on firm performance. Journal of Business Research, 99, 507-515.
  29. Lee, S., and Kim, W. (2017). The knowledge network dynamics in a mobile ecosystem: A patent citation analysis. Scientometrics, 111(2), 717-742. https://doi.org/10.1007/s11192-017-2270-9
  30. Lee, S., Kim, W., Lee, H., and Jeon, J. (2016). Identifying the structure of knowledge networks in the US mobile ecosystems: Patent citation analysis. Technology Analysis & Strategic Management, 28(4), 411-434. https://doi.org/10.1080/09537325.2015.1096336
  31. Li, X., Chen, H., Huang, Z., and Roco, M. C. (2007). Patent citation network in nanotechnology (1976-2004). Journal of Nanoparticle Research, 9(3), 337-352. https://doi.org/10.1007/s11051-006-9194-2
  32. Love, J. H., and Roper, S. (1999). The determinants of innovation: R & D, technology transfer and networking effects. Review of Industrial Organization, 15(1), 43-64. https://doi.org/10.1023/A:1007757110963
  33. Ma, D., Zhang, Y. R., and Zhang, F. (2020). The influence of network positions on exploratory innovation: An empirical evidence from china's patent analysis. Science, Technology and Society, 25(1), 184-207. https://doi.org/10.1177/0971721819890045
  34. Maddox, T. M., Rumsfeld, J. S., and Payne, P. R. (2019). Questions for artificial intelligence in health care. Jama, 321(1), 31-32. https://doi.org/10.1001/jama.2018.18932
  35. Marketsandmarkets (2018). Artificial Intelligence Market worth $190.61 billion by 2025 with a Growing CAGR of 36.6%. https://www.marketsandmarkets.com/PressReleases/artificial-intelligence.asp (accessed on 25 February 2020).
  36. Patricio, D. I., and Rieder, R. (2018). Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Computers and Electronics in Agriculture, 153, 69-81. https://doi.org/10.1016/j.compag.2018.08.001
  37. Phelps, C., Heidl, R., and Wadhwa, A. (2012). Knowledge, networks, and knowledge networks: A review and research agenda. Journal of Management, 38(4), 1115-1166. https://doi.org/10.1177/0149206311432640
  38. Powell, W. W., and Snellman, K. (2004). The knowledge economy. Annual Review of Sociology, 30, 199-220. https://doi.org/10.1146/annurev.soc.29.010202.100037
  39. Powell, W. W., Packalen, K., and Whittington, K. (2010). Organizational and institutional genesis and change: The emergence and transformation of the commercial life sciences. The Emergence of Organizations and Markets, 379-433.
  40. Purushu, P., Melcher, N., Bhagwat, B., and Woo, J. (2018). Predictive analysis of financial fraud detection using Azure and Spark ML. Asia Pacific Journal of Information Systems, 28(4), 308-319. https://doi.org/10.14329/apjis.2018.28.4.308
  41. Quan, X. I., and Sanderson, J. (2018). Understanding the artificial intelligence business ecosystem. IEEE Engineering Management Review, 46(4), 22-25.
  42. Ramesh, A. N., Kambhampati, C., Monson, J. R., and Drew, P. J. (2004). Artificial intelligence in medicine. Annals of The Royal College of Surgeons of England, 86(5), 334.
  43. Rogers, E. M. (2010). Diffusion of Innovations. Simon and Schuster.
  44. Romijn, H., and Albaladejo, M. (2002). Determinants of innovation capability in small electronics and software firms in southeast England. Research Policy, 31(7), 1053-1067. https://doi.org/10.1016/S0048-7333(01)00176-7
  45. Rousseau, M. B., Mathias, B. D., Madden, L. T., and Crook, T. R. (2016). Innovation, firm performance, and appropriation: A meta-analysis. International Journal of Innovation Management, 20(03), 1650033.
  46. Smith, M. J. (2020). Getting value from artificial intelligence in agriculture. Animal Production Science, 60(1), 46-54. https://doi.org/10.1071/AN18522
  47. Strong, A. I. (2016). Applications of artificial intelligence & associated technologies. Proceeding of International Conference on Emerging Technologies in Engineering, Biomedical, Management and Science, 5-6.
  48. Takano, Y., Mejia, C., and Kajikawa, Y. (2016). Unconnected component inclusion technique for patent network analysis: Case study of Internet of Things-related technologies. Journal of Informetrics, 10(4), 967-980. https://doi.org/10.1016/j.joi.2016.05.004
  49. Timms, M. J. (2016). Letting artificial intelligence in education out of the box: Educational cobots and smart classrooms. International Journal of Artificial Intelligence in Education, 26(2), 701-712.
  50. Tsai, W. (2001). Knowledge transfer in intraorganizational networks: Effects of network position and absorptive capacity on business unit innovation and performance. Academy of Management Journal, 44(5), 996-1004. https://doi.org/10.2307/3069443
  51. Tseng, C. Y., and Ting, P. H. (2013). Patent analysis for technology development of artificial intelligence: A country-level comparative study. Innovation, 15(4), 463-475. https://doi.org/10.5172/impp.2013.15.4.463
  52. Van de Ven, A. H. (1986). Central problems in the management of innovation. Management Science, 32(5), 590-607. https://doi.org/10.1287/mnsc.32.5.590
  53. Wasserman, S., and Faust, K. (1994). Social network analysis: Methods and Applications (Vol. 8). Cambridge University Press.
  54. Wen, J., Qualls, W. J., and Zeng, D. (2021). To explore or exploit: The influence of inter-firm R&D network diversity and structural holes on innovation outcomes. Technovation, 100, 102178.
  55. Yang, G. C., Li, G., Li, C-Y., Zhao, Y-H., Zhang, J., Liu, T., Chen, D-Z., and Huang, M-H. (2015). Using the comprehensive patent citation network (CPC) to evaluate patent value. Scientometrics, 105(3), 1319-1346. https://doi.org/10.1007/s11192-015-1763-7
  56. Yu, K. H., and Kohane, I. S. (2019). Framing the challenges of artificial intelligence in medicine. BMJ Quality & Safety, 28(3), 238-241.
  57. Zaheer, A., and Bell, G. G. (2005). Benefiting from network position: firm capabilities, structural holes, and performance. Strategic Management Journal, 26(9), 809-825. https://doi.org/10.1002/smj.482
  58. Zaltman, G., Duncan, R., and Holbek, J. (1973). Innovations and Organizations. New York; Toronto: Wiley.