DOI QR코드

DOI QR Code

Evaluation of the Urban Heat Island Intensity in Seoul Predicted from KMA Local Analysis and Prediction System

기상청 국지기상예측시스템을 이용한 서울의 도시열섬강도 예측 평가

  • Byon, Jae-Young (National Institute of Meteorological Sciences, Korea Meteorological Administration) ;
  • Hong, Seon-Ok (National Institute of Meteorological Sciences, Korea Meteorological Administration) ;
  • Park, Young-San (National Institute of Meteorological Sciences, Korea Meteorological Administration) ;
  • Kim, Yeon-Hee (National Institute of Meteorological Sciences, Korea Meteorological Administration)
  • 변재영 (기상청 국립기상과학원) ;
  • 홍선옥 (기상청 국립기상과학원) ;
  • 박영산 (기상청 국립기상과학원) ;
  • 김연희 (기상청 국립기상과학원)
  • Received : 2021.01.14
  • Accepted : 2021.03.17
  • Published : 2021.04.30

Abstract

The purpose of this study was to evaluate the urban heat island (UHI) intensity and the corresponding surface temperature forecast obtained using the local data assimilation and prediction system (LDAPS) of the Korea Meteorological Administration (KMA) against the AWS observation. The observed UHI intensity in Seoul increases during spring and winter, while it decreases during summer. It is found that the diurnal variability of the UHI intensity peaks at dawn but reaches a minimum in the afternoon. The LDAPS overestimates the UHI intensity in summer but underestimates it in winter. In particular, the model tends to overestimate the UHI intensity during the daytime in summer but underestimate it during the nighttime in winter. Moreover, surface temperature errors decrease in summer but increase in winter. The underestimation of the winter UHI intensity appears to be associated with weak forecasting of urban temperature in winter. However, the overestimated summer UHI intensity results from the underestimation of the suburban temperature forecast in summer. In order to improve the predictability of the UHI intensity, an urban canopy model (MORUSES) that considers urban effects was combined with LDAPS and used for simulation for the summer of 2017. The surface temperature forecast for the city was improved significantly by adopting MORUSES, and there were remarkable improvements in urban surface temperature morning forecasts. The urban canopy model produced an improvement effect that weakened the intensity of the UHI, which showed an overestimation during summer.

본 연구는 기상청 현업모델(LDAPS)로부터 예측된 서울의 도시열섬 강도와 지상 기온을 AWS 관측과 비교 평가하였다. 관측된 서울의 열섬 강도는 봄과 겨울동안 증가하며 여름동안 감소한다. 열섬 강도의 시간적 변동 경향은 새벽 시간 최대, 오후에 최소를 보인다. 기상청 국지기상예측시스템(LDAPS)으로부터 예측된 열섬 강도는 여름철 과대모의, 겨울철 과소모의 특징을 보인다. 특히 여름철은 주간에 과대 모의 경향이 증가하며, 겨울은 새벽 시간 과소 모의 오차가 크게 나타난다. LDAPS에서 예측된 지면 기온의 오차는 여름철 감소하며 겨울철 증가한다. 겨울철 열섬 강도의 과소 모의는 도시 기온의 과소 모의와 관련되었으며, 여름철 열섬 강도의 과대 모의는 교외 지역 기온의 과소 모의로부터 기인하는것으로 판단된다. 도시 열섬강도 예측성 개선을 위하여 도시효과를 고려하는 도시캐노피모델을 LDAPS와 결합하여 2017년 여름 기간동안 모의하였다. 도시캐노피모델 적용 후 도시의 지면 기온의 오차는 개선되었다. 특히 오전시간 과소모의되는 기온의 오차 개선 효과가 뚜렷하였다. 도시캐노피모델은 여름동안 과대 모의하는 도시열섬강도를 약화시키는 개선 효과를 보였다.

Keywords

References

  1. Ahn, J., and H. Kim, 2006, On the seasonal variation of urban heat island intensity according to meteorological condition in Daegu, Journal of Environmental Science International, 15(6), 527-532. (in Korean) https://doi.org/10.5322/JES.2006.15.6.527
  2. Andres, S.-M., A. Dipankar, M. Roth, C. Sanchez, E. Velasco, X.-Y. Huang, 2020, Application of MORUSES single-layer urban canopy model in a tropical city: Results from Singapore, Quartery Journal of the Royal Meteorological Society, 146, 576-597. https://doi.org/10.1002/qj.3694
  3. Best, M. J., 2005, Representing urban areas within operational numerical weather prediction models, Boundary Layer Meteorology, 114, 91-109. https://doi.org/10.1007/s10546-004-4834-5
  4. Best, M. J. and C. S. B. Grimmond, 2015, Key conclusions of the first international urban land surface model comparison project. Bulletin of American Meteorological Society, 96, 805-819. https://doi.org/10.1175/BAMS-D-14-00122.1
  5. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Menard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J., 2011, The Joint UK Land Environment Simulator (JULES), model description-Part 1: Energy and water fluxes, Geoscientific Model Development, 4, 677-699. https://doi.org/10.5194/gmd-4-677-2011
  6. Bohnenstengel, S. I, S. Evans, P. A. Clark, and Belcher, S. E., 2011, Simulations of the London urban heat island. Quarterly Journal of the Royal Meteorological Society, 137, 1625-1640. https://doi.org/10.1002/qj.855
  7. Bornstein, R., 1968, Observations of the urban heat island effect in New York city. Journal of Applied Meteorology, 7, 575-582. https://doi.org/10.1175/1520-0450(1968)007<0575:OOTUHI>2.0.CO;2
  8. Byon, J.-Y., Y.-J. Choi, and B.-G. Seo, 2010, Evaluation of urban weather forecast using WRF-UCM (Urban Canopy Model) over Seoul, Atmosphere, 20(1), 13-26. (in Korean)
  9. Chen, F., Kusaka, H., Bornstein, B., Ching, J., Grimmond, C. S. B., G.-Clarke, S., Loridan, T., Manning, K. W., Martilli, A., Miao, S., Sailor, D., Salamanca, F. P., Taha, H., Tewari, M., Wang, X., Wyszogrodzki, A. A., C. Zhang, C., 2011: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems, International Journal of Climatology, 31, 273-288. https://doi.org/10.1002/joc.2158
  10. Cui, Y. Y., and B. de Foy, 2012, Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City, Journal of Applied Meteorology and Climatology, 51, 855-868. https://doi.org/10.1175/JAMC-D-11-0104.1
  11. Do W-G, and W-S Jung, 2012, An analysis on the variation trend of urban heat island in Busan area (2006-2010), Journal of the environmental sciences, 21(8), 953-963. (in Korean) https://doi.org/10.5322/JES.2012.21.8.953
  12. Edwards, J. M. and Slingo, A., 1996, Studies with a flexible new radiation code. I: Choosing a configuration for a largescale model. Quarterly Journal of the Royal Meteorological Society, 122, 689-719. https://doi.org/10.1002/qj.49712253107
  13. Hertwig, D, S. Grimmond, M. Hendry, B. Saunders, Z. Wang, M. Jeoffrion, P. Vidale, P. McGuire, S. Bohnenstengel, H. Ward, S. Kotthaus, 2020, Urban signals in high-resolution weather and climate simulations: role of urban land-surface characterization, Theoretical and Applied Climatology, 142, 701-728. https://doi.org/10.1007/s00704-020-03294-1
  14. Hong, J-W, J. Hong, S.-E. Lee, and J. Lee, 2013, Spatial distribution of urban heat island based on local climate zone of automatic weather station in Seoul Metropolitan Area. Atmosphere, 23, 1-12. https://doi.org/10.14191/Atmos.2013.23.1.001
  15. Hong, S.-O., J.-Y. Byon, H. Park, Y.-G. Lee, B.-J. Kim, and J.-C. Ha, 2018, Sensitivity analysis of near surface air temperature to land cover change and urban parameterization scheme using Unified Model, Atmosphere, 28(4), 427-441. (in Korean) https://doi.org/10.14191/ATMOS.2018.28.4.427
  16. Hong, S.-O., D.-H. Kim, J.-Y. Byon, H. Park, and J.-C. Ha, 2019, Analysis of the effects of advection and urban fraction on urban heat island intensity using Unified Model for Seoul Metropolitan Area, Korea, Atmosphere, 29(4), 381-390. (in Korean) https://doi.org/10.14191/Atmos.2019.29.4.381
  17. Jauregui, E., 1997, Heat island development in Mexico City, Atmospheric Environment, 31, 3821-3831. https://doi.org/10.1016/S1352-2310(97)00136-2
  18. Kim, D.-H., S.-O. Hong, J.-Y. Byon, H. Park, and J.-C. Ha, 2019, Development and evaluation of urban canopy model based on Unified Model input data using urban building information data in Seoul, Atmosphere, 29(4), 417-427. (in Korean) https://doi.org/10.14191/Atmos.2019.29.4.417
  19. Kim, Y. H. and Baik, J.-J., 2002, Maximum urban heat island intensity in Seoul, Journal of Applied Meteorology, 41, 651-659. https://doi.org/10.1175/1520-0450(2002)041<0651:MUHIII>2.0.CO;2
  20. Kim, Y. H. and Baik, J.-J., 2004, Daily maximum urban heat island intensity in large cities of Korea, Theoretical and Applied Climatology, 79, 151-164. https://doi.org/10.1007/s00704-004-0070-7
  21. Kim, Y. H. and Baik, J.-J., 2005, Spatial and temporal structure of the urban heat island in Seoul, Journal of Applied Meteorology, 44, 591-605. https://doi.org/10.1175/JAM2226.1
  22. KMA, 2014, Local data assimilation and prediction system operator quick manual, 24p.
  23. Koo H-J, Y-H Kim, and B-C Choi, 2007, A study on the change of the urban heat island structure in Seoul, Journal of climate research, 2(2), 67-78. (in Korean)
  24. Kusaka, H., Kondo, H., Kikegawa, Y., and Kimura, F., 2001, A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Boundary Layer Meteorology, 101, 329-358. https://doi.org/10.1023/A:1019207923078
  25. Lee, S.-H. and Baik, J.-J., 2010, Statistical and dynamical characteristics of the urban heat island intensity in Seoul, Theoretical and Applied Climatology, 100, 227-237. https://doi.org/10.1007/s00704-009-0247-1
  26. Lee, S.-H. and Park. S. U., 2008, A vegetated urban canopy model for meteorological and environmental modelling, Boundary Layer Meteorology, 126. 73-102. https://doi.org/10.1007/s10546-007-9221-6
  27. Li, D. and Elie B.-Z., 2013, Synergistic interactions between urban heat islands and heat waves: The impact in cities is larger than the sum of its parts, Journal of Applied Meteorology and Climatology, 52, 2051-2064. https://doi.org/10.1175/JAMC-D-13-02.1
  28. Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., and Smith, R. N. B., 2000, A new boundary layer mixing scheme. Part ?: Scheme description and single-column model tests, Monthly Weather Review, 128, 3187-3199. https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
  29. Masson, V., 2000, A physically-based scheme for the urban energy budget in atmospheric models, Boundary Layer Meteorology, 94, 357-397. https://doi.org/10.1023/A:1002463829265
  30. Oleson, K. W. and Bonan, G. B., 2008a, An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities, Journal of Applied Meteorology, 47, 1038-1060. https://doi.org/10.1175/2007JAMC1597.1
  31. Oleson, K. W. and Bonan, G. B., 2008b, An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the simulated urban heat island in off-line simulations, Journal of Applied Meteorology, 47, 1061-1076. https://doi.org/10.1175/2007JAMC1598.1
  32. Park, C., D-K Lee, S. Sung, J. Park, S. Jeong, 2016, Analyzing the diurnal and spatial variation of surface urban heat island intensity distribution - Focused on 30 cities in Korea, Journal of Korea Planning Association, 51(1), 125-136. (in Korean) https://doi.org/10.17208/jkpa.2016.02.51.1.125
  33. Park, S-B, 2004, Measurement and analysis of heat island in summer in Gwangju, Journal of the Korean Solar Energy Society, 24(4), 65-75. (in Korean)
  34. Porson, A., Clark, P. A., Harman, I. N., Best, M. J., and Belcher, S. E., 2010a: Implementation of a new urban energy budget scheme in the MetUM. Part ?: Description and idealized simulations, Quarterly Journal of the Royal Meteorological Society, 136, 1514-1529. https://doi.org/10.1002/qj.668
  35. Porson, A., Clark, P. A., Harman, I. N., Best, M. J., and Belcher, S. E., 2010b, Implementation of a new urban energy budget scheme in the MetUM. Part II: Validation against observation and model intercomparison, Quarterly Journal of the Royal Meteorological Society, 136, 1530-1542. https://doi.org/10.1002/qj.572
  36. Runnalls, K. and Oke, T., 2000, Dynamics and controls of the near-surface heat island of Vancouver, British Columbia, Physical Geography, 21, 283-304. https://doi.org/10.1080/02723646.2000.10642711
  37. Schatz, J. and Kucharik, C. J., 2014, Seasonality of the urban heat island effect in Madison, Wisconsin. Journal of Applied Meteorology and Climatology, 53, 2371-2386. https://doi.org/10.1175/JAMC-D-14-0107.1
  38. Tomlinson, C. J., Chapman, L., Thornes, J. E., and Baker, C., 2011, Remote sensing land surface temperature for meteorology and climatology: A review. Meteorological Applications, 18, 296-306 https://doi.org/10.1002/met.287
  39. Wie, J., S-O Hong, J-Y Byon, J-C Ha, and B-K Moon, 2020, Sensitivity analysis of surface energy budget to albedo parameters in Seoul Metropolitan Area using the Unified Model. Atmosphere, 11, 120;doi:10.3390/atmos11010120.
  40. Wilby, R. L., 2003, Past and projected trends in London's urban heat island. Weather, 58, 251-260. https://doi.org/10.1256/wea.183.02
  41. Wilson, D. R. and Ballard, S. P., 1999, A microphysically based precipitation scheme for the UK Meteorological Office Unified Model, Quarterly Journal of the Royal Meteorological Society, 125, 1607-1636. https://doi.org/10.1002/qj.49712555707
  42. Zhou, B., Rybski, D., and Kropp, J. P., 2013, On the statistics of urban heat island intensity, Geophysical Research Letters, 40, 5486-5491. https://doi.org/10.1002/2013GL057320