참고문헌
- Basmenj, A.K., Ghafoori, M., Cheshomi, A. and Azandariani, Y.K. (2016), "Adhesion of clay to metal surface; Normal and tangential measurementy", Geomech. Eng., 10(2), 125-135. https://doi.org/10.12989/gae.2016.10.2.125.
- Breiman, L. (2001), "Random forests", Mach. Learn., 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
- Cheng, W.C., Ni, J.C., Arulrajah, A. and Huang, H.W. (2018), "A simple approach for characterising tunnel bore conditions based upon pipe-jacking data", Tunn. Undergr. Sp. Tech., 71, 494-504. https://doi.org/10.1016/j.tust.2017.10.002.
- Cheng, W.C., Ni, J.C., Shen, S.L. and Huang, H.W. (2017), "Investigation into factors affecting jacking force: A case study", P. I. Civ. Eng. Geotec., 170(4), 322-334. https://doi.org/10.1680/jgeen.16.00117.
- Cheng, W.C., Wang, L., Xue, Z.F., Ni, J.C., Rahman M. and Arulrajah, A. (2019a), "Lubrication performance of pipejacking in alluvial deposits", Tunn. Undergr. Sp. Tech., 91, 102991. https://doi.org/10.1016/j.tust.2019.102991.
- Cheng, W.C., Ni, J.C., Huang, H.W. and Shen, J.S. (2019b), "The use of tunnelling parameters and spoil characteristics to assess soil types: A case study from alluvial deposits at a pipejacking project site", B. Eng. Geol. Environ., 78(4), 2933-2942. https://doi.org/10.1007/s10064-018-1288-4.
- Cheng, W.C., Bai, X.D., Sheil, B.B., Li, G. and Wang, F. (2020a), "Identifying characteristics of pipejacking parameters to assess geological conditions using optimisation algorithm-based support vector machines", Tunn. Undergr. Sp. Tech., 106, 103592. https://doi.org/10.1016/j.tust.2020.103592.
- Cheng, W.C., Li, G., Ong, D.E.L., Chen, S.L. and Ni, J.C. (2020b), "Modelling liner forces response to very close-proximity tunnelling in soft alluvial deposits", Tunn. Undergr. Sp. Tech., 103, 103455. https://doi.org/10.1016/j.tust.2020.103455.
- Cheng, W.C., Li, G., Liu, N., Xu, J. and Horpibulsuk, S. (2020c), "Recent massive incidents for subway construction in soft alluvial deposits of Taiwan: A review", Tunn. Undergr. Sp. Tech., 96, 103178. https://doi.org/10.1016/j.tust.2019.103178.
- Cleveland, R.B., Cleveland, W.S., McRae, J.E. and Terpenning, I.J. (1990), "STL: A seasonal-trend decomposition procedure based on loess", J. Off. Stat., 6(1), 3-33.
- Eskandari, F., Goharrizi, K.G. and Hooti, R. (2018), "The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro", Geomech. Eng., 15(2), 769-774. https://doi.org/10.12989/gae.2018.15.2.769.
- Feinendegen, M., Ziegler, M., Weh, M. and Spagnoli, G. (2011), "Clogging during EPB-tunnelling: Occurrence, classification and new manipulation methods", Proceedings of the ITA-AITES World Tunnel Congress, Helsinki, Finland, January.
- Fountaine, E.R. (1954), "Investigations into the mechanism of soil adhesion", Eur. J. Soil Sci., 5(2), 251-263. https://doi.org/10.1111/j.1365-2389.1954.tb02191.x.
- Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Stat., 19, 1-67. https://doi.org/10.1214/aos/1176347963
- Gao, W. and He, T.Y. (2017), "Displacement prediction in geotechnical engineering based on evolutionary neural network", Geomech. Eng., 13(5), 845-860. https://doi.org/10.12989/gae.2017.13.5.845.
- Goh, A.T.C. and Hefney, A.M. (2010), "Reliability assessment of EPB tunnel-related settlement", Geomech. Eng., 2(1), 57-69. https://doi.org/10.12989/gae.2010.2.1.057.
- Hollmann, F.S. and Thewes, M. (2013), "Assessment method for clay clogging and disintegration of fines in mechanised tunnelling", Tunn. Undergr. Sp. Tech., 37, 96-106. https://doi.org/10.1016/j.tust.2013.03.010.
- Javadi, A.A. and Rezania, M. (2009), "Applications of artificial intelligence and data mining techniques in soil modeling", Geomech. Eng., 1(1), 53-74. https://doi.org/10.12989/gae.2009.1.1.053.
- Lee, C.J., Jeon, Y.J. Kim, S.H. and Park, I.J. (2016), "The influence of tunnelling on the behaviour of pre-existing piled foundations in weathered soil", Geomech. Eng., 11(4), 553-570. https://doi.org/10.12989/gae.2016.11.4.553.
- Li, S., Liu, B., Nie, L., Liu, Z., Tian, M., Wang, S., Su, M. and Guo, Q. (2015), "Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: A review", J. Rock Mech. Geotech. Eng., 7(4), 469-478. https://doi.org/10.1016/j.jrmge.2015.06.004.
- Li, S., Nie, L. and Liu, B. (2018b), "The practice of forward prospecting of adverse geology applied to hard rock TBM tunnel construction: The case of the Songhua River water conveyance project in the middle of Jilin Province", Engineering, 4(1), 131-137. https://doi.org/10.1016/j.eng.2017.12.010.
- Li, S., Xu, S., Nie, L., Liu, B., Liu, R., Zhang, Q., Zhao, Y., Liu, Q., Wang, H., Liu, H. and Guo, Q. (2018a), "Assessment of electrical resistivity imaging for pre-tunneling geological characterization - a case study of the Qingdao R3 metro line tunnel", J. Appl. Geophys., 153, 38-46. https://doi.org/10.1016/j.jappgeo.2018.03.024.
- Liu, B., Liu, Z., Li, S., Fan, K., Nie, L. and Zhang, X. (2017a), "An improved time-lapse resistivity tomography to monitor and estimate the impact on the groundwater system induced by tunnel excavation", Tunn. Undergr. Sp. Tech., 66, 107-120. https://doi.org/10.1016/j.tust.2017.04.008.
- Liu, B., Liu, Z., Nie, L., Su, M., Sun, H., Fan, K., Zhang, X. and Pang, Y. (2017b), "Comprehensive surface geophysical investigation of karst caves ahead of the tunnel face: A case study in the Xiaoheyan section of the water supply project from Songhua River, Jilin, China", J. Appl. Geophys., 144, 37-49. https://doi.org/10.1016/j.jappgeo.2017.06.013.
- Liu, J.K., Luan, H.J., Zhang, Y.C., Sakaguchi, O. and Jiang, Y.J. (2020), "Prediction of unconfined compressive strength ahead of tunnel face using measurement-while-drilling data based on hybrid genetic algorithm", Geomech. Eng., 22(1), 81-95. https://doi.org/10.12989/gae.2020.22.1.081.
- Luat, N.V., Lee, K. and Thai, D.K. (2020a), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583.
- Luat, N.V., Nguyen, V.Q. and Lee, S. (2020b), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
- Mazek, S.A. (2014), "Evaluation of surface displacement equation due to tunnelling in cohesionless soil", Geomech. Eng., 7(1), 55-73. https://doi.org/10.12989/gae.2014.7.1.055.
- O'Dwyer, K.G., McCabe, B.A. and Sheil, B.B. (2019), "Interpretation of pipe-jacking and lubrication records for drives in silty soil", Undergr. Sp., 5(3), 199-209. https://doi.org/10.1016/j.undsp.2019.04.001.
- Park, T.W., Kim, H.G., Tanvirn, M.T., lee, J.B. and Moon, S.J. (2018), "Influence of coarse particles on the physical properties and quick undrained shear strength of fine-grained soils", Geomech. Eng., 14(1), 99-105. https://doi.org/10.12989/gae.2018.14.1.099.
- Persons, W.M. (1919), Indices of Business Conditions: An Index of General Business Conditions, Harvard University Press.
- Rezaei, A.H., Shirzehhagh, M. and Golpasand, M.R.B. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 153-165. https://doi.org/10.12989/gae.2019.19.2.153.
- Scholkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J. and Williamson, R.C. (2001), "Estimating the support of a highd-imensional distribution", Neural Comput., 13(7), 1443-1471. https://doi.org/10.1162/089976601750264965.
- Sheil, B.B., Curran, B.G. and McCabe, B.A. (2016), "Experiences of utility microtunnelling in Irish limestone, mudstone and sandstone rock", Tunn. Undergr. Sp. Tech., 51, 326-337. https://doi.org/10.1016/j.tust.2015.10.019.
- Sheil, B.B., Suryasentana, S.K. and Cheng, W.C. (2020), "Assessment of anomaly detection methods applied to microtunneling", J. Geotech. Geoenviron. Eng., 146(9). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002326.
- Spagnoli, G., Feinendegen, M., Stanjek, H. and Azzam, R. (2011a), "Soil conditioning for clays in EPBMs", Tunn. Tunn. Int., 43(10), 56-61.
- Spagnoli, G., Klitzsch, N., Fernandez-Steeger, T., Feinendegen, M., Rey, A.R., Stanjek, H. and Azzam, R. (2011b), "Application of electro-osmosis to reduce the adhesion of clay during mechanical tunnel driving", Environ. Eng. Geosci., 17(4), 417-426. https://doi.org/10.2113/gseegeosci.17.4.417.
- Thewes, M. (1999), "Adhesion of clay soil in tunnel drives with slurry shields (In German: Adhasion von Tonboden beim Tunnelvortrieb mit Flussigkeitsschilden)", Berichte aus Bodenmechanik und Grundbau der Bergischen Universitat Wuppertal, Fachbereich Bauingenieurwesen, Bd. 21. Shaker Verlag, Aachen, Germany.
- Thewes, M. and Hollmann, F.S. (2014), "TBM-specific testing scheme to assess the clogging tendency of rock", Geomech. Tunn., 7(5), 520-527. https://doi.org/10.1002/geot.201400048.
- Thewes, M. and Hollmann, F.S. (2016), "Assessment of clay soils and clay-rich rock for clogging of TBMs", Tunn. Undergr. Sp. Tech., 57, 122-128. https://doi.org/10.1016/j.tust.2016.01.010.
- Wang, Z.F., Cheng, W.C. and Wang, Y.Q. (2018), "Investigation into geohazards during urbanization process of Xi'an, China", Nat. Hazards, 92(3), 1937-1953. https://doi.org/10.1007/s11069-018-3280-5.
- Xu, J.C., Ren, Q.W. and Shen, Z.H. (2017), "Sensitivity analysis of the influencing factors of slope stability based on LS-SVM", Geomech. Eng., 13(3), 447-458. https://doi.org/10.12989/gae.2017.13.4.447.
- Zhang, W.G. and Goh, A.T.C. (2016), "Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression", Geomech. Eng., 10(3), 269-284. https://doi.org/10.12989/gae.2016.10.3.269.
- Zhang, W.G., Zhang, R.H. and Goh, A.T.C. (2018), "MARS inverse analysis of soil and wall properties for braced excavations in clays", Geomech. Eng., 16(6), 577-588. https://doi.org/10.12989/gae.2018.16.6.577.
피인용 문헌
- Revealing the Enhancement and Degradation Mechanisms Affecting the Performance of Carbonate Precipitation in EICP Process vol.9, 2021, https://doi.org/10.3389/fbioe.2021.750258
- Internal erosion behaviour of compacted loess against different hydraulic conditions indicated by enhanced pinhole tests vol.14, pp.21, 2021, https://doi.org/10.1007/s12517-021-08583-1