DOI QR코드

DOI QR Code

Surface erosion behavior of biopolymer-treated river sand

  • Kwon, Yeong-Man (Department of Civil and Environmental Engineering, KAIST) ;
  • Cho, Gye-Chun (Department of Civil and Environmental Engineering, KAIST) ;
  • Chung, Moon-Kyung (Korea Institute of Civil Engineering and Building Technology) ;
  • Chang, Ilhan (Department of Civil Systems Engineering, Ajou University)
  • Received : 2021.01.25
  • Accepted : 2021.03.04
  • Published : 2021.04.10

Abstract

The resistance of soil to the tractive force of flowing water is one of the essential parameters for the stability of the soil when directly exposed to the movement of water such as in rivers and ocean beds. Biopolymers, which are new to sustainable geotechnical engineering practices, are known to enhance the mechanical properties of soil. This study addresses the surface erosion resistance of river-sand treated with several biopolymers that originated from micro-organisms, plants, and dairy products. We used a state-of-the-art erosion function apparatus with P-wave reflection monitoring. Experimental results have shown that biopolymers significantly improve the erosion resistance of soil surfaces. Specifically, the critical shear stress (i.e., the minimum shear stress needed to detach individual soil grains) of biopolymer-treated soils increased by 2 to 500 times. The erodibility coefficient (i.e., the rate of increase in erodibility as the shear stress increases) decreased following biopolymer treatment from 1 × 10-2 to 1 × 10-6 times compared to that of untreated river-sands. The scour prediction calculated using the SRICOS-EFA program has shown that a height of 14 m of an untreated surface is eroded during the ten years flow of the Nakdong River, while biopolymer treatment reduced this height to less than 2.5 m. The result of this study has demonstrated the possibility of cross-linked biopolymers for river-bed stabilization agents.

Keywords

References

  1. ASTM (2010), D2216-10: Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  2. ASTM (2017), D6913/D6913M-17: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
  3. Bahar, R., Benazzoug, M. and Kenai, S. (2004), "Performance of compacted cement-stabilised soil", Cement Concrete Compos., 26(7), 811-820. https://doi.org/10.1016/j.cemconcomp.2004.01.003.
  4. Biron, P.M., Robson, C., Lapointe, M.F. and Gaskin, S.J. (2004), "Comparing different methods of bed shear stress estimates in simple and complex flow fields", Earth Surf. Proc. Land., 29(11), 1403-1415. https://doi.org/10.1002/esp.1111.
  5. Bouazza, A., Gates, W. and Ranjith, P. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.
  6. Briaud, J.L. (2008), "Case histories in soil and rock erosion: Woodrow wilson bridge, brazos river meander, normandy cliffs, and new orleans levees", J. Geotech. Geoenviron. Eng., 134(10), 1425-1447. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1425).
  7. Briaud, J.L., Chen, H.C., Govindasamy, A.V. and Storesund, R. (2008), "Levee erosion by overtopping in new orleans during the Katrina hurricane", J. Geotech. Geoenviron. Eng., 134(5), 618-632. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:5(618).
  8. Briaud, J.L., Ting, F., Chen, H., Gudavalli, R., Kwak, K., Philogene, B., Han, S.W., Perugu, S., Wei, G. and Nurtjahyo, P.J.T.T.I. (1999), SRICOS: Prediction of Scour Rate at Bridge Piers, Texas A&M University, C.S., Texas, U.S.A., 2937-293.
  9. Briaud, J.L., Ting, F.C.K., Chen, H.C., Gudavalli, R., Perugu, S. and Wei, G. (1999), "SRICOS: Prediction of scour rate in cohesive soils at bridge piers", J. Geotech. Geoenviron. Eng., 125(4), 237-246. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(237).
  10. Briaud, J.L., Ting, F.C.K., Chen, H.C., Cao, Y., Han, S.W. and Kwak, K.W. (2001), "Erosion function apparatus for scour rate predictions", J. Geotech. Geoenviron. Eng., 127(2), 105-113. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105).
  11. Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633.
  12. Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
  13. Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.
  14. Chang, I., Im, J., Lee, S.W. and Cho, G.C. (2017), "Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying", Constr. Build. Mater., 143, 210-221. https://doi.org/10.1016/j.conbuildmat.2017.02.061.
  15. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
  16. Chang, I., Kwon, Y.M., Im, J. and Cho, G.C. (2019), "Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation", Can. Geotech. J., 56(8), 1206-1213. https://doi.org/10.1139/cgj-2018-0254.
  17. Chang, I., Prasidhi, A.K., Im, J., Shin, H.-D. and Cho, G.-C. (2015), "Soil treatment using microbial biopolymers for antidesertification purposes", Geoderma. 253-254, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.
  18. Chen, C., Wu, L., Perdjon, M., Huang, X. and Peng, Y. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater., 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.
  19. Cheng, L. and Cord-Ruwisch, R. (2012), "In situ soil cementation with ureolytic bacteria by surface percolation", Ecol. Eng., 42, 64-72. https://doi.org/10.1016/j.ecoleng.2012.01.013.
  20. Christianson, D.D. (1981), "Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum", Cereal Chem., 58(6), 513-517.
  21. Curvelo, A.A.S., de Carvalho, A.J.F. and Agnelli, J.A.M. (2001), "Thermoplastic starch-cellulosic fibers composites: Preliminary results", Carbohyd. Polym., 45(2), 183-188. https://doi.org/10.1016/S0144-8617(00)00314-3.
  22. Deng, L. and Cai, C.S. (2010), "Bridge scour: Prediction, modeling, monitoring, and countermeasures", Practice Period. Struct. Des. Construct., 15(2), 125-134. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000041.
  23. Dey, S. and Raikar, R.V. (2007), "Clear-water scour at piers in sand beds with an armor layer of gravels", J. Hydraul. Eng., 133(6), 703-711. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(703).
  24. El-Morsy, E.A., Malik, M. and Letey, J. (1991), "Polymer effects on the hydraulic conductivity of saline and sodic soil conditions", Soil Sci., 151(6), 430-435. https://doi.org/10.1097/00010694-199106000-00004
  25. Fujino, Y., Sun, L., Pacheco, B.M. and Chaiseri, P. (1992), "Tuned liquid damper (TLD) for suppressing horizontal motion of structures", J. Eng. Mech., 118(10), 2017-2030. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:10(2017).
  26. Ham, S.M., Chang, I., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", J. Geotech. Geoenviron. Eng., 144(7), 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.
  27. Ham, S., Kwon, T., Chang, I. and Chung, M. (2016), "Ultrasonic P-wave reflection monitoring of soil erosion for erosion function apparatus", Geotech. Test. J., 39(2), 301-314. https://doi.org/10.1520/GTJ20150040.
  28. Hanson, G. and Cook, K. (1997), "Development of excess shear stress parameters for circular jet testing", ASAE Paper, 972227.
  29. Heidarpour, M., Afzalimehr, H. and Izadinia, E. (2010), "Reduction of local scour around bridge pier groups using collars", Int. J. Sediment Res., 25(4), 411-422. https://doi.org/10.1016/S1001-6279(11)60008-5.
  30. Hemar, Y., Tamehana, M., Munro, P.A. and Singh, H. (2001), "Viscosity, microstructure and phase behavior of aqueous mixtures of commercial milk protein products and xanthan gum", Food Hydrocolloid., 15(4), 565-574. https://doi.org/10.1016/S0268-005X(01)00077-7.
  31. Ji, U., Julien, P.Y. and Park, S.K. (2011), "Sediment flushing at the Nakdong River estuary barrage", J. Hydraul. Eng., 137(11), 1522-1535. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000395.
  32. Jiugao, Y., Ning, W. and Xiaofei, M. (2005), "The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol", Starch Starke. 57(10), 494-504. https://doi.org/10.1002/star.200500423.
  33. Khatami, H.R. and O'Kelly, B.C. (2012), "Improving mechanical properties of sand using biopolymers", J. Geotech. Geoenviron. Eng., 139(8), 1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.
  34. Kim, C. and Yoo, B. (2006), "Rheological properties of rice starch-xanthan gum mixtures", J. Food Eng., 75(1), 120-128. https://doi.org/10.1016/j.jfoodeng.2005.04.002.
  35. Kim, Y.M., Park, T. and Kwon, T.H. (2019), "Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation", Geomech. Eng., 17(5), 485-496. https://doi.org/10.12989/gae.2019.17.5.485.
  36. Kwon, Y.M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behaviors of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.
  37. Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C. and Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotechnique Lett., 10(2), 1-7. https://doi.org/10.1680/jgele.19.00106.
  38. Lauchlan, C.S. and Melville, B.W. (2001), "Riprap protection at bridge piers", J. Hydraul. Eng., 127(5), 412-418. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(412).
  39. Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
  40. Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
  41. Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F. and Nava-Saucedo, J.E. (2008), "Polymer biodegradation: Mechanisms and estimation techniques - A review", Chemosphere. 73(4), 429-442. https://doi.org/10.1016/j.chemosphere.2008.06.064.
  42. Martin, G., Yen, T. and Karimi, S. (1996), "Application of biopolymer technology in silty soil matrices to form impervious barriers", Proceedings of the 7th Australia New Zealand Conference on Geomechanics: Geomechanics in a Changing World, Adelaide, Australia, July.
  43. Martin, O., Averous, L. and Della Valle, G. (2003), "In-line determination of plasticized wheat starch viscoelastic behavior: Impact of processing", Carbohyd. Polym., 53(2), 169-182. https://doi.org/10.1016/S0144-8617(03)00040-7.
  44. Moody, L.F. (1944), "Friction factors for pipe flow", Trans. ASME, 66, 671-684.
  45. National Institute of Enviromental Research (2020), Water Environment Information System.
  46. Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Rec., 2101(1), 34-43. https://doi.org/10.3141/2101-05.
  47. Nugent, R.A., Zhang, G. and Gambrell, R.P. (2010), "The effects of exopolymers on the erosional resistance of cohesive sediments", Proceedings of the International Conference on Scour and Erosion (ICSE-5) 2010, San Francisco, California, U.S.A., November.
  48. Prendergast, L.J. and Gavin, K. (2014), "A review of bridge scour monitoring techniques", J. Rock Mech. Geotech. Eng., 6(2), 138-149. https://doi.org/10.1016/j.jrmge.2014.01.007.
  49. Reddy, N., Reddy, R. and Jiang, Q. (2015), "Crosslinking biopolymers for biomedical applications", Trends Biotechnol., 33(6), 362-369. https://doi.org/10.1016/j.tibtech.2015.03.008.
  50. Reddy, N. and Yang, Y. (2010), "Citric acid cross-linking of starch films", Food Chem., 118(3), 702-711. https://doi.org/10.1016/j.foodchem.2009.05.050.
  51. Renault, F., Sancey, B., Badot, P.M. and Crini, G. (2009), "Chitosan for coagulation/flocculation processes-An eco-friendly approach", Eur. Polym. J., 45(5), 1337-1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027.
  52. Schulze, K., Hunger, M. and Doll, P. (2005), "Simulating river flow velocity on global scale", Adv. Geosci., 5, 133-136. https://doi.org/10.5194/adgeo-5-133-2005
  53. Temple, D.M. (1992), "Estimating flood damage to vegetated deep soil spillways", Appl. Eng. Agric., 8(2), 237-242. https://doi.org/10.13031/2013.26059.
  54. Tingsanchali, T. and Chinnarasri, C. (2001), "Numerical modelling of dam failure due to flow overtopping", Hydrolog. Sci., 46(1), 113-130. https://doi.org/10.1080/02626660109492804.
  55. Wiszniewski, M. and Cabalar, A.F. (2014), Hydraulic conductivity of a Biopolymer Treated Sand, in New Frontiers in Geotechnical Engineering, 19-27.
  56. Zarrati, A.R., Nazariha, M. and Mashahir, M.B. (2006), "Reduction of local scour in the vicinity of bridge pier groups using collars and riprap", J. Hydraul. Eng., 132(2), 154-162. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(154).