References
- ASTM (2010), D2216-10: Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- ASTM (2017), D6913/D6913M-17: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Bahar, R., Benazzoug, M. and Kenai, S. (2004), "Performance of compacted cement-stabilised soil", Cement Concrete Compos., 26(7), 811-820. https://doi.org/10.1016/j.cemconcomp.2004.01.003.
- Biron, P.M., Robson, C., Lapointe, M.F. and Gaskin, S.J. (2004), "Comparing different methods of bed shear stress estimates in simple and complex flow fields", Earth Surf. Proc. Land., 29(11), 1403-1415. https://doi.org/10.1002/esp.1111.
- Bouazza, A., Gates, W. and Ranjith, P. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.
- Briaud, J.L. (2008), "Case histories in soil and rock erosion: Woodrow wilson bridge, brazos river meander, normandy cliffs, and new orleans levees", J. Geotech. Geoenviron. Eng., 134(10), 1425-1447. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1425).
- Briaud, J.L., Chen, H.C., Govindasamy, A.V. and Storesund, R. (2008), "Levee erosion by overtopping in new orleans during the Katrina hurricane", J. Geotech. Geoenviron. Eng., 134(5), 618-632. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:5(618).
- Briaud, J.L., Ting, F., Chen, H., Gudavalli, R., Kwak, K., Philogene, B., Han, S.W., Perugu, S., Wei, G. and Nurtjahyo, P.J.T.T.I. (1999), SRICOS: Prediction of Scour Rate at Bridge Piers, Texas A&M University, C.S., Texas, U.S.A., 2937-293.
- Briaud, J.L., Ting, F.C.K., Chen, H.C., Gudavalli, R., Perugu, S. and Wei, G. (1999), "SRICOS: Prediction of scour rate in cohesive soils at bridge piers", J. Geotech. Geoenviron. Eng., 125(4), 237-246. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(237).
- Briaud, J.L., Ting, F.C.K., Chen, H.C., Cao, Y., Han, S.W. and Kwak, K.W. (2001), "Erosion function apparatus for scour rate predictions", J. Geotech. Geoenviron. Eng., 127(2), 105-113. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105).
- Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633.
- Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.
- Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.
- Chang, I., Im, J., Lee, S.W. and Cho, G.C. (2017), "Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying", Constr. Build. Mater., 143, 210-221. https://doi.org/10.1016/j.conbuildmat.2017.02.061.
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
- Chang, I., Kwon, Y.M., Im, J. and Cho, G.C. (2019), "Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation", Can. Geotech. J., 56(8), 1206-1213. https://doi.org/10.1139/cgj-2018-0254.
- Chang, I., Prasidhi, A.K., Im, J., Shin, H.-D. and Cho, G.-C. (2015), "Soil treatment using microbial biopolymers for antidesertification purposes", Geoderma. 253-254, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.
- Chen, C., Wu, L., Perdjon, M., Huang, X. and Peng, Y. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater., 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.
- Cheng, L. and Cord-Ruwisch, R. (2012), "In situ soil cementation with ureolytic bacteria by surface percolation", Ecol. Eng., 42, 64-72. https://doi.org/10.1016/j.ecoleng.2012.01.013.
- Christianson, D.D. (1981), "Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum", Cereal Chem., 58(6), 513-517.
- Curvelo, A.A.S., de Carvalho, A.J.F. and Agnelli, J.A.M. (2001), "Thermoplastic starch-cellulosic fibers composites: Preliminary results", Carbohyd. Polym., 45(2), 183-188. https://doi.org/10.1016/S0144-8617(00)00314-3.
- Deng, L. and Cai, C.S. (2010), "Bridge scour: Prediction, modeling, monitoring, and countermeasures", Practice Period. Struct. Des. Construct., 15(2), 125-134. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000041.
- Dey, S. and Raikar, R.V. (2007), "Clear-water scour at piers in sand beds with an armor layer of gravels", J. Hydraul. Eng., 133(6), 703-711. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(703).
- El-Morsy, E.A., Malik, M. and Letey, J. (1991), "Polymer effects on the hydraulic conductivity of saline and sodic soil conditions", Soil Sci., 151(6), 430-435. https://doi.org/10.1097/00010694-199106000-00004
- Fujino, Y., Sun, L., Pacheco, B.M. and Chaiseri, P. (1992), "Tuned liquid damper (TLD) for suppressing horizontal motion of structures", J. Eng. Mech., 118(10), 2017-2030. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:10(2017).
- Ham, S.M., Chang, I., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", J. Geotech. Geoenviron. Eng., 144(7), 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.
- Ham, S., Kwon, T., Chang, I. and Chung, M. (2016), "Ultrasonic P-wave reflection monitoring of soil erosion for erosion function apparatus", Geotech. Test. J., 39(2), 301-314. https://doi.org/10.1520/GTJ20150040.
- Hanson, G. and Cook, K. (1997), "Development of excess shear stress parameters for circular jet testing", ASAE Paper, 972227.
- Heidarpour, M., Afzalimehr, H. and Izadinia, E. (2010), "Reduction of local scour around bridge pier groups using collars", Int. J. Sediment Res., 25(4), 411-422. https://doi.org/10.1016/S1001-6279(11)60008-5.
- Hemar, Y., Tamehana, M., Munro, P.A. and Singh, H. (2001), "Viscosity, microstructure and phase behavior of aqueous mixtures of commercial milk protein products and xanthan gum", Food Hydrocolloid., 15(4), 565-574. https://doi.org/10.1016/S0268-005X(01)00077-7.
- Ji, U., Julien, P.Y. and Park, S.K. (2011), "Sediment flushing at the Nakdong River estuary barrage", J. Hydraul. Eng., 137(11), 1522-1535. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000395.
- Jiugao, Y., Ning, W. and Xiaofei, M. (2005), "The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol", Starch Starke. 57(10), 494-504. https://doi.org/10.1002/star.200500423.
- Khatami, H.R. and O'Kelly, B.C. (2012), "Improving mechanical properties of sand using biopolymers", J. Geotech. Geoenviron. Eng., 139(8), 1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.
- Kim, C. and Yoo, B. (2006), "Rheological properties of rice starch-xanthan gum mixtures", J. Food Eng., 75(1), 120-128. https://doi.org/10.1016/j.jfoodeng.2005.04.002.
- Kim, Y.M., Park, T. and Kwon, T.H. (2019), "Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation", Geomech. Eng., 17(5), 485-496. https://doi.org/10.12989/gae.2019.17.5.485.
- Kwon, Y.M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behaviors of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.
- Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C. and Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotechnique Lett., 10(2), 1-7. https://doi.org/10.1680/jgele.19.00106.
- Lauchlan, C.S. and Melville, B.W. (2001), "Riprap protection at bridge piers", J. Hydraul. Eng., 127(5), 412-418. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(412).
- Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
- Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
- Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F. and Nava-Saucedo, J.E. (2008), "Polymer biodegradation: Mechanisms and estimation techniques - A review", Chemosphere. 73(4), 429-442. https://doi.org/10.1016/j.chemosphere.2008.06.064.
- Martin, G., Yen, T. and Karimi, S. (1996), "Application of biopolymer technology in silty soil matrices to form impervious barriers", Proceedings of the 7th Australia New Zealand Conference on Geomechanics: Geomechanics in a Changing World, Adelaide, Australia, July.
- Martin, O., Averous, L. and Della Valle, G. (2003), "In-line determination of plasticized wheat starch viscoelastic behavior: Impact of processing", Carbohyd. Polym., 53(2), 169-182. https://doi.org/10.1016/S0144-8617(03)00040-7.
- Moody, L.F. (1944), "Friction factors for pipe flow", Trans. ASME, 66, 671-684.
- National Institute of Enviromental Research (2020), Water Environment Information System.
- Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Rec., 2101(1), 34-43. https://doi.org/10.3141/2101-05.
- Nugent, R.A., Zhang, G. and Gambrell, R.P. (2010), "The effects of exopolymers on the erosional resistance of cohesive sediments", Proceedings of the International Conference on Scour and Erosion (ICSE-5) 2010, San Francisco, California, U.S.A., November.
- Prendergast, L.J. and Gavin, K. (2014), "A review of bridge scour monitoring techniques", J. Rock Mech. Geotech. Eng., 6(2), 138-149. https://doi.org/10.1016/j.jrmge.2014.01.007.
- Reddy, N., Reddy, R. and Jiang, Q. (2015), "Crosslinking biopolymers for biomedical applications", Trends Biotechnol., 33(6), 362-369. https://doi.org/10.1016/j.tibtech.2015.03.008.
- Reddy, N. and Yang, Y. (2010), "Citric acid cross-linking of starch films", Food Chem., 118(3), 702-711. https://doi.org/10.1016/j.foodchem.2009.05.050.
- Renault, F., Sancey, B., Badot, P.M. and Crini, G. (2009), "Chitosan for coagulation/flocculation processes-An eco-friendly approach", Eur. Polym. J., 45(5), 1337-1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027.
- Schulze, K., Hunger, M. and Doll, P. (2005), "Simulating river flow velocity on global scale", Adv. Geosci., 5, 133-136. https://doi.org/10.5194/adgeo-5-133-2005
- Temple, D.M. (1992), "Estimating flood damage to vegetated deep soil spillways", Appl. Eng. Agric., 8(2), 237-242. https://doi.org/10.13031/2013.26059.
- Tingsanchali, T. and Chinnarasri, C. (2001), "Numerical modelling of dam failure due to flow overtopping", Hydrolog. Sci., 46(1), 113-130. https://doi.org/10.1080/02626660109492804.
- Wiszniewski, M. and Cabalar, A.F. (2014), Hydraulic conductivity of a Biopolymer Treated Sand, in New Frontiers in Geotechnical Engineering, 19-27.
- Zarrati, A.R., Nazariha, M. and Mashahir, M.B. (2006), "Reduction of local scour in the vicinity of bridge pier groups using collars and riprap", J. Hydraul. Eng., 132(2), 154-162. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(154).