References
- Akbulut, S. and Saglamer, A. (2002), "Estimating the groutability of granular soils: A new approach", Tunn. Undergr. Sp. Tech., 17(4), 371-380. https://doi.org/10.1016/S0886-7798(02)00040-8.
- ASTM (2019), D2434-19 Standard Test Method for Permeability of Granular Soils (Constant Head), ASTM International, West Conshohocken, Pennsylvania, U.S.A.
- Bell, F. (1993), Engineering Treatment of Soils, CRC Press, Florida, U.S.A.
- Benhelal, E., Zahedi, G., Shamsaei, E. and Bahadori, A. (2013), "Global strategies and potentials to curb CO2 emissions in cement industry", J. Clean. Prod., 51 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049.
- Bouazza, A., Gates, W. and Ranjith, P. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique. 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.
- Burwell, E. (1958), "Cement and clay grouting of foundations: Practice of the corps of engineers", J. Soil Mech. Found. Div. 84(1), 1-22. https://doi.org/10.1061/JSFEAQ.0000099.
- Cabalar, A.F., Wiszniewski, M. and Skutnik, Z. (2017), "Effects of xanthan gum biopolymer on the permeability, odometer, unconfined compressive and triaxial shear behavior of a sand", Soil Mech. Found. Eng., 54(5), 356-361. https://doi.org/10.1007/s11204-017-9481-1.
- Casas, J.A., Santos, V.E. and Garcia-Ochoa, F. (2000), "Xanthan gum production under several operational conditions: Molecular structure and rheological properties", Enzyme Microb. Tech., 26(2-4), 282-291. https://doi.org/10.1016/S0141-0229(99)00160-X.
- Chang, I. and Cho, G.C. (2012), "Strengthening of Korean residual soil with β-1,3/1,6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030.
- Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.
- Chang, I., Im, J. and Cho, G.C. (2016), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251.
- Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.
- Chang, I., Lee, M. and Cho, G.C. (2019), "Global CO2 emission-related geotechnical engineering hazards and the mission for sustainable geotechnical engineering", Energies. 12(13), 2567. https://doi.org/10.3390/en12132567.
- Chang, I., Lee, M., Tran, A.T.P., Lee, S., Kwon, Y.M., Im, J. and Cho, G.C. (2020), "Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices", Transport. Geotech., 24, 100385. https://doi.org/10.1016/j.trgeo.2020.100385
- Chang, I., Prasidhi, A.K., Im, J. and Cho, G.C. (2015), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116.
- Chang, I., Prasidhi, A.K., Im, J., Shin, H.D. and Cho, G.C. (2015), "Soil treatment using microbial biopolymers for anti-desertification purposes", Geoderma, 253-254, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.
- Choi, S.G., Chang, I., Lee, M., Lee, J.H., Han, J.T. and Kwon, T.H. (2020), "Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers", Constr. Build. Mater., 246, 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415.
- DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
- Eklund, D. and Stille, H. (2008), "Penetrability due to filtration tendency of cement-based grouts", Tunn. Undergr. Sp. Tech., 23(4), 389-398. https://doi.org/10.1016/j.tust.2007.06.011.
- Garcia-Ochoa, F., Santos, V.E., Casas, J.A. and Gomez, E. (2000), "Xanthan gum: production, recovery, and properties", Biotechnol. Adv., 18(7), 549-579. https://doi.org/10.1016/S0734-9750(00)00050-1.
- Gupta, S. and Larson, W. (1979), "A model for predicting packing density of soils using particle‐size distribution", Soil Sci. Soc. Am. J., 43(4), 758-764. https://doi.org/10.2136/sssaj1979.03615995004300040028x.
- Ham, S.M., Chang, I., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", J. Geotech. Geoenviron. Eng., 144(7), 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.
- Jeon, M.K., Kwon, T.H., Park, J.S. and Shin, J.H. (2017), "In situ viscoelastic properties of insoluble and porous polysaccharide biopolymer dextran produced by Leuconostoc mesenteroides using particle-tracking microrheology", Geomech. Eng., 12(5), 849-862. https://doi.org/10.12989/gae.2017.12.5.849.
- Jin, H., Ryu, B. and Lee, J. (2016), "Development and assessment of laboratory testing apparatus on grouting injection performance", J. Kor. Geoenviron. Soc., 17(10), 23-31. https://doi.org/10.14481/jkges.2016.17.10.23.
- Kim, Y.M., Park, T. and Kwon, T.H. (2019), "Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation", Geomech. Eng., 17(5), 485-496. https://doi.org/10.12989/gae.2019.17.5.485.
- Ko, D. and Kang, J. (2018), "Experimental studies on the stability assessment of a levee using reinforced soil based on a biopolymer", Water, 10(8), 1059. https://doi.org/10.3390/w10081059.
- Kumar, S. (2010), "A study on the engineering behaviour of grouted loose sandy soils", Ph.D. Dissertation, Cochin University of Science, Kochi, India
- Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C. and Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotechnique Lett., 10(2), 1-7. https://doi.org/10.1680/jgele.19.00106.
- Larson, S., Ballard, J., Griggs, C., Newman, J.K. and Nestler, C. (2010). "An innovative non-ptroleum Rhizobium Tropici biopolymer salt for soil stabilization", Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, Canada.
- Lee, J., Frost, D., Lee, J. and Dremin, A. (1995), "Propagation of nitromethane detonations in porous media", Shock Waves, 5(1-2), 115-119. https://doi.org/10.1007/BF02425043.
- Lee, M., Im, J., Cho, G.C., Ryu, H.H. and Chang, I. (2021), "Interfacial shearing behavior along Xanthan gum biopolymer-treated sand and solid interfaces and its meaning in geotechnical engineering aspects", Appl. Sci., 11(1), 139. https://doi.org/10.3390/app11010139.
- Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.
- Liu, Z. and Yao, P. (2015), "Injectable shear-thinning xanthan gum hydrogel reinforced by mussel-inspired secondary crosslinking", RSC Adv., 5(125), 103292-103301. https://doi.org/10.1039/C5RA17246B.
- Noh, D.H., Ajo-Franklin, J.B., Kwon, T.H. and Muhunthan, B. (2016), "P and S wave responses of bacterial biopolymer formation in unconsolidated porous media", J. Geophys. Res. Biogeosci., 121(4), 1158-1177. https://doi.org/10.1002/2015JG003118.
- Qureshi, M.U., Chang, I. and Al-Sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785.
- Santagata, M. and Santagata, E. (2003), "Experimental investigation of factors affecting the injectability of microcement grouts", Proceedings of the 3rd International Conference on Grouting and Ground Treatment, New Orleans, Louisiana, U.S.A., Febrauary.
- Santamarina, J.C., Klein, K.A. and Fam, M.A. (2001), Soils and Waves, John Wiley & Sons, Chichester, New York, U.S.A.
- Soldo, A., Miletic, M. and Auad, M.L. (2020), "Biopolymers as a sustainable solution for the enhancement of soil mechanical properties", Sci. Rep., 10(1), 267. https://doi.org/10.1038/s41598-019-57135-x.
- Sworn, G. (2021), Chapter 27 - Xanthan Fum, in Handbook of Hydrocolloids, Woodhead Publishing
- Tran, A.T.P. (2019), "Characterization of biopolymer-treated soils considering soil-water-hydrogel Interaction", KAIST, Daejeon, Korea.
- Tran, A.T.P., Chang, I. and Cho, G.C. (2019), "Soil water retention and vegetation survivabiity improvement using microbial biopolymers in drylands", Geomech. Eng., 17(5), 475-483. https://doi.org/10.12989/gae.2019.17.5.475.
- USGS (2020), Mineral Commodity Summaries 2020, U.S. Geological Survey: National Minerals Information Center, Reston, Virginia, U.S.A.
- Whiffin, V.S., van Paassen, L.A. and Harkes, M.P. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobiol. J., 24(5), 417-423. https://doi.org/10.1080/01490450701436505.
- Xia, S., Zhang, L., Davletshin, A., Li, Z., You, J. and Tan, S. (2020), "Application of polysaccharide biopolymer in petroleum recovery", Polymers, 12(9), 1860. https://doi.org/10.3390/polym12091860.
- Yoon, J. and El Mohtar, C.S. (2014), "Groutability of granular soils using bentonite grout based on filtration model", Transport. Porous Med., 102(3), 365-385. https://doi.org/10.1007/s11242-014-0279-6.
- Zhong, L., Oostrom, M., Truex, M.J., Vermeul, V.R. and Szecsody, J.E. (2013), "Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation", J. Hazard. Mater., 244 160-170. https://doi.org/10.1016/j.jhazmat.2012.11.028.