참고문헌
- Akgun, A., Sezer, E.A., Nefeslioglu, H.A., Gokceoglu, C. and Pradhan, B. (2012), "An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm", Land Degrad. Develop., 38(1), 23-34. https://doi.org/10.1016/j.cageo.2011.04.012.
- Amato, G., Eisank, C., Castro Camilo, D. and Lombardo, L. (2019), "Accounting for covariate distributions in slope-unitbased landslide susceptibility models. A case study in the alpine environment", Eng. Geol., 260(3), 105237. https://doi.org/10.1016/j.enggeo.2019.105237.
- Balzano, B., Tarantino, A., Nicotera, M.V., Forte, G., de Falco, M. and Santo, A. (2019), "Building physically based models for assessing rainfall-induced shallow landslide hazard at catchment scale: Case study of the Sorrento Peninsula (Italy)", Can. Geotech. J., 56(9), 1291-1303. https://doi.org/10.1139/cgj-2017-0611.
- Boulfoul, K., Hammoud, F. and Abbeche, K. (2020), "Numerical study on the optimal position of a pile for stabilization purpose of a slope", Geomech. Eng., 21(5), 401-411. https://doi.org/10.12989/gae.2020.21.5.401.
- Breiman, L. (2001), "Random forests", Machine Learn., 45(1), 5-32. https://doi.org/10.1023/a:1010933404324.
- Bui, D.T., Tuan, T.A., Klempe, H., Pradhan, B. and Revhaug, I. (2016), "Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree", Landslides, 13(2), 361-378. https://doi.org/10.1007/s10346-015-0557-6.
- Catani, F., Lagomarsino, D., Segoni, S. and Tofani, V. (2013), "Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues", Nat. Hazards Earth Syst. Sci., 13(11), 2815-2831. https://doi.org/10.5194/nhess-13-2815-2013.
- Chen, W., Panahi, M. and Pourghasemi, H.R. (2017a), "Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling", Catena, 157, 310-324. https://doi.org/10.1016/j.catena.2017.05.034.
- Chen, W., Pourghasemi, H.R. and Zhao, Z. (2017b), "A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping", Geocarto Int., 32(4), 367-385. https://doi.org/10.1080/10106049.2016.1140824.
- Chen, W., Xie, X., Peng, J., Shahabi, H., Hong, H., Bui, D.T., Duan, Z., Li, S. and Zhu, A.X. (2018), "GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method", Catena, 164, 135-149. https://doi.org/10.1016/j.catena.2018.01.012.
- Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D.T., Duan, Z. and Ma, J. (2017c), "A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility", Catena, 151, 147-160. https://doi.org/10.1016/j.catena.2016.11.032.
- Cheng, W.C., Ni, J.C., Arulrajah, A. and Huang, H.W. (2018), "A simple approach for characterising tunnel bore conditions based upon pipe jacking data", Tunn. Undergr. Sp. Tech., 71, 494-504. https://doi.org/10.1016/j.tust.2017.10.002.
- Cortes, C. and Vapnik, V. (1995), "Support-vector networks", Machine Learning, 20(3), 273-297. https://doi.org/10.1007/BF00994018.
- Degraff, J.V. and Canuti, P. (1988), "Using isopleth mapping to evaluate landslide activity in relation to agricultural practices", B. Eng. Geol. Environ., 38(1), 61-71.
- Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002), "Gene selection for cancer classification using support vector machines", Machine Learning, 46(1-3), 389-422. https://doi.org/10.1023/A:1012487302797.
- Hong, H., Ilia, I., Tsangaratos, P., Chen, W. and Xu, C. (2017), "A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China", Geomorphology, 290, 1-16. https://doi.org/10.1016/j.geomorph.2017.04.002.
- Hong, H., Liu, J., Bui, D.T., Pradhan, B., Acharya, T.D., Pham, B.T., Zhu, A.X., Chen, W. and Ahmad, B.B. (2018a), "Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China)", Catena, 163, 399-413. https://doi.org/10.1016/j.catena.2018.01.005.
- Hong, H., Pourghasemi, H.R. and Pourtaghi, Z.S. (2016), "Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models", Geomorphology, 259, 105-118. https://doi.org/10.1016/j.geomorph.2016.02.012.
- Hong, H., Pradhan, B., Sameen, M.I., Kalantar, B., Zhu, A. and Chen, W. (2018b), "Improving the accuracy of landslide susceptibility model using a novel region-partitioning approach", Landslides, 15(4), 753-772. https://doi.org/10.1007/s10346-017-0906-8.
- Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A.X. and Chen, W. (2018c), "Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China", Sci. Total Environ., 625, 575-588. https://doi.org/10.1016/j.scitotenv.2017.12.256.
- Irigaray, C., Fernández, T., El Hamdouni, R. and Chacon, J. (2007), "Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: Examples from the Betic Cordillera (southern Spain)", Nat. Hazards, 41(1), 61-79. https://doi.org/10.1007/s11069-006-9027-8.
- Kavzoglu, T. and Mather, P.M. (2010), "The role of feature selection in artificial neural network applications", Int. J. Remote Sensing, 23(15), 2919-2937. https://doi.org/10.1080/01431160110107743.
- Lagomarsino, D., Tofani, V., Segoni, S., Catani, F. and Casagli, N. (2017), "A tool for classification and regression Using random forest methodology: Applications to landslide susceptibility mapping and soil thickness modeling", Environ. Model. Asses., 22(3), 201-214. https://doi.org/10.1007/s10666-016-9538-y.
- Li, C., Yao, D., Wang, Z., Liu, C.C., Wuliji, N., Yang, L., Li, L. and Amini, F. (2016), "Model test on rainfall-induced loess-mudstone interfacial landslides in Qingshuihe, China", Environ. Earth Sci., 75(9), 835. https://doi.org/10.1007/s12665-016-5658-6.
- Liu, D. and Chen, X. (2015), "Shearing characteristics of slip zone soils and strain localization analysis of a landslide", Geomech. Eng., 8(1), 33-52. https://doi.org/10.12989/gae.2015.8.1.033.
- Liu, L.L., Cheng, Y.M., Pan, Q.J. and Dias, D. (2020), "Incorporating stratigraphic boundary uncertainty into reliability analysis of slopes in spatially variable soils using one-dimensional conditional Markov chain model", Comput. Geotech., 118, 103321. https://doi.org/10.1016/j.compgeo.2019.103321.
- Liu, L.L., Deng, Z.P., Zhang, S.H. and Cheng, Y.M. (2018), "Simplified framework for system reliability analysis of slopes in spatially variable soils", Eng. Geol., 239, 330-343. https://doi.org/10.1016/j.enggeo.2018.04.009.
- Lombardi, M., Cardarilli, M. and Raspa, G. (2017), "Spatial variability analysis of soil strength to slope stability assessment", Geomech. Eng., 12(3), 483-503. https://doi.org/10.12989/gae.2017.12.3.483.
- Lombardo, L. and Mai, P.M. (2018), "Presenting logistic regression-based landslide susceptibility results", Eng. Geol., 244, 14-24. https://doi.org/10.1016/j.enggeo.2018.07.019.
- Merghadi, A., Yunus, A.P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D.T., Avtar, R. and Abderrahmane, B. (2020), "Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance", Earth-Sci. Rev., 207, 103225. https://doi.org/10.1016/j.earscirev.2020.103225.
- Micheletti, N., Foresti, L., Robert, S., Leuenberger, M., Pedrazzini, A., Jaboyedoff, M. and Kanevski, M. (2014), "Machine learning feature selection methods for landslide susceptibility mapping", Math. Geosci., 46(1), 33-57. https://doi.org/10.1007/s11004-013-9511-0.
- Moore, I., Grayson, R. and Ladson, T. (1991), "Digital Terrain Modeling: A review of hydrological, geomorphological, and biological applications", Hydrol. Process., 5, 3-30. https://doi.org/10.1002/hyp.3360050103.
- Paola, R., Galli, M., Cardinali, M., Guzzetti, F. and Ardizzone, F., (2004), Geomorphological Mapping to Assess Landslide Risk: Concepts, Methods and Applications in the Umbria Region of Central Italy, in Landslide Hazard and Risk, Hoboken, New Jersey, U.S.A.
- Pham, B.T., Avand, M., Janizadeh, S., Phong, T.V., Al-Ansari, N., Ho, L.S., Das, S., Le, H.V., Amini, A., Bozchaloei, S.K., Jafari, F. and Prakash, I. (2020), "GIS based hybrid computational approaches for flash flood susceptibility assessment", Water, 12(3), 683. https://doi.org/10.3390/w12030683.
- Pourghasemi, H.R. and Rahmati, O. (2018), "Prediction of the landslide susceptibility: Which algorithm, which precision?", Catena, 162, 177-192. https://doi.org/10.1016/j.catena.2017.11.022.
- Pourghasemi, H.R., Kornejady, A., Kerle, N. and Shabani, F. (2020), "Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping", Catena, 187, 104364. https://doi.org/10.1016/j.catena.2019.104364.
- Pourghasemi, H.R., Pradhan, B., Gokceoglu, C., Mohammadi, M. and Moradi, H.R. (2013), "Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran", Arab. J. Geosci., 6(7), 2351-2365. https://doi.org/10.1007/s12517-012-0532-7.
- Rasmussen, C.E. and Nickisch, H. (2010), "Gaussian processes for machine learning (GPML) toolbox", J. Mach. Learn. Res., 11(6), 3011-3015. https://doi.org/10.1115/1.4002474.
- Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M. and Guzzetti, F. (2018), "A review of statistically-based landslide susceptibility models", Earth-Sci. Rev., 180, 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001.
- Reif, D.M., Motsinger, A.A., Mckinney, B.A., Jr, J.E.C. and Moore, J.H. (2006), "Feature selection using a random forests classifier for the integrated analysis of multiple data types" Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics & Computational Biology, Toronto, Canada, September.
- Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M. and Sabeti, P.C. (2011), "Detecting novel associations in large data sets", Science, 334(6062), 1518-1524. https://doi.org/10.1126/science.1205438.
- Samia, J., Temme, A., Bregt, A., Wallinga, J., Guzzetti, F. and Ardizzone, F. (2020), "Dynamic path-dependent landslide susceptibility modelling", Nat. Hazards Earth Syst. Sci., 20(1), 271-285. https://doi.org/10.5194/nhess-20-271-2020.
- Sheil, B.B., Suryasentana, S.K. and Cheng, W.C. (2020), "Assessment of anomaly detection methods applied to microtunneling", J. Geotech. Geoenviron. Eng., 146(9), 04020094. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002326.
- Shou, K.J. and Lin, J.F. (2020), "Evaluation of the extreme rainfall predictions and their impact on landslide susceptibility in a subcatchment scale", Eng. Geol., 265, 105434. https://doi.org/10.1016/j.enggeo.2019.105434.
- Skolidis, G. and Sanguinetti, G. (2011), "Bayesian nultitask classification with Gaussian process priors", IEEE T. Neur. Networks, 22(12), 2011-2021. https://doi.org/10.1109/tnn.2011.2168568.
- Sun, D., Wen, H., Wang, D. and Xu, J. (2020), "A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm", Geomorphology, 362, 107201. https://doi.org/10.1016/j.geomorph.2020.107201.
- Vasu, N.N. and Lee, S.R. (2016), "A hybrid feature selection algorithm integrating an extreme learning machine for landslide susceptibility modeling of Mt. Woomyeon, South Korea", Geomorphology, 263, 50-70. https://doi.org/10.1016/j.geomorph.2016.03.023.
- Wang, F., Xu, P., Wang, C., Wang, N. and Jiang, N. (2017), "Application of a GIS-based slope unit method for landslide susceptibility mapping along the Longzi river, Southeastern Tibetan Plateau, China", ISPRS Int. J. Geo-Inform., 6(6), 172. https://doi.org/10.3390/ijgi6060172.
- Wang, L.J., Guo, M., Sawada, K., Lin, J. and Zhang, J. (2015), "Landslide susceptibility mapping in Mizunami City, Japan: A comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models", Catena, 135, 271-282. https://doi.org/10.1016/j.catena.2015.08.007.
- Weiss, A. (2001), "Topographic position and landforms analysis", Proceedings of the ESRI User Conference, San Diego, California, U.S.A., July.
- Wold, S., Esbensen, K. and Geladi, P. (1987), "Principal component analysis", Chemometr. Intell. Lab., 2(1-3), 37-52. https://doi.org/10.1016/0169-7439(87)80084-9.
- Xing, H., Liu, L. and Luo, Y. (2019), "Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability", Geomech. Eng., 18(4), 353-362. https://doi.org/10.12989/gae.2019.18.4.353.
- Yalcin, A., Reis, S., Aydinoglu, A.C. and Yomralioglu, T. (2011), "A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey", Catena, 85(3), 274-287. https://doi.org/https://doi.org/10.1016/j.catena.2011.01.014.
- Yang, Y., Yang, J., Xu, C., Xu, C. and Song, C. (2019), "Local-scale landslide susceptibility mapping using the B-GeoSVC model", Landslides, 16(7), 1301-1312. https://doi.org/10.1007/s10346-019-01174-y.
- Youssef, A.M., Al-Kathery, M. and Pradhan, B. (2015), "Landslide susceptibility mapping at Al-Hasher area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models", Geosci. J., 19(1), 113-134. https://doi.org/10.1007/s12303-014-0032-8.
- Zhang, K., Wu, X., Niu, R., Yang, K. and Zhao, L. (2017), "The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China", Environ. Earth Sci., 76(11), 405. https://doi.org/10.1007/s12665-017-6731-5.