DOI QR코드

DOI QR Code

Impact Assessment between Heatwave and Drought Based on PLS-SEM

부분최소제곱 구조방정식(PLS-SEM)을 이용한 폭염과 가뭄의 영향평가

  • 유지영 (한양대학교(ERICA) 공학기술연구소) ;
  • 김장경 (베이지안웍스) ;
  • 한정우 (텍사스 A&M 대학교 생명농업공학과) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • Received : 2020.09.29
  • Accepted : 2020.11.03
  • Published : 2021.04.01

Abstract

The occurrence mechanisms of heatwave have been conventionally studied at a synoptic scale. However, the implications of precedent droughts on the following up heatwave occurrences have not been elucidated and are important to address the complex causal mechanisms of heatwaves. Therefore, this study evaluated the causality and implication of the seasonally antecedent droughts to summer heatwaves that occurred for 46 years since 1974 using partial least squares-structural equation modeling (PLS-SEM). The resulting contribution of winter (spring and summer) droughts to summer heatwaves for Seoul-Gyeonggi, Gangwon, and Chungcheong provinces were 37 % (29 % and 22 %), 21 % (18 % and 29 %), and 17 % (8 % and 38 %), respectively. This is due to the regional variability of seasonal drought impacts. Furthermore, Gangwon and Chungcheong provinces, which have a higher level of impacts of summer droughts to summer heatwaves, are more likely to be exposed to the compound drought-heatwave damages compared to Seoul-Gyeonggi province, which has relatively a low-level impact of summer drought.

폭염의 발생 메커니즘은 대부분 종관 규모적 관점에서 연구가 이루어지고 있으나, 폭염발생 이전의 또 다른 자연재해로 인한 연쇄적인 영향을 해석하기 위한 연구도 중요하다. 본 연구에서는 폭염 발생 이전에 나타나는 가뭄과의 인과관계 및 영향을 평가하기 위해 부분최소제곱 구조방정식 모형(PLS-SEM)을 이용하였다. 1974년부터 약 46년간 발생한 여름철 폭염에 미치는 계절별 가뭄의 영향정도는, 겨울철 서울(경기)지역은 37%, 강원지역은 21 %, 충청지역은 17 %이며, 봄철 서울(경기)지역은 29 %, 강원지역은 18 %, 충청지역은 8 %이며, 여름철 서울(경기)지역은 22 %, 강원지역은 29 %, 충청지역 38 %로 확인되었다. 이는 지역별로 나타나는 폭염과 계절별 가뭄이 미치는 영향의 정도가 다르기 때문에 따라 나타나는 결과로 해석된다. 여름철 가뭄-폭염 간의 영향이 크게 나타난 강원, 충청 지역은 서울(경기)지역에 비해 가뭄-폭염으로 인한 피해양상이 복합적으로 나타날 가능성이 있다.

Keywords

References

  1. AghaKouchak, A., Huning, L. S., Chiang, F., Sadegh, M., Vahedifard, F., Mazdiyasni, O., Moftakhari, H. and Mallakpour, I. (2018). "How do natural hazards cascade to cause disasters?" Nature, Vol. 561, pp. 458-460. https://doi.org/10.1038/d41586-018-06783-6
  2. Barbero, R., Abatzoglou, J. T., Steel, E. A. and Larkin, N. K. (2014). "Modeling very large-fire occurences over the continental United States from weather and climate forcing." Environmental Research Letters, Vol. 9, No. 12, 124009. https://doi.org/10.1088/1748-9326/9/12/124009
  3. Cohen, J. (1988). Statistical power analysis for the behavioral sciences, Lawrence Erlbaum, Mahwah, NJ.
  4. Fornell, C. and Cha, J. (1994). "Partial least squares." Advanced Methods of Marketing Research, In R. P. Bagozzi (Ed.), Basil Blackwell, Cambridge, pp. 52-78.
  5. Fornell, C. G. and Larcker, D. F. (1981). "Evaluating structural equation models with unobservable variables and measurement error." Journal of Marketing Research, Vol. 18, No. 1, pp. 39-50. https://doi.org/10.1177/002224378101800104
  6. Forzieri, G., Feyen, L., Russo, S., Vousdoukas, M., Alfieri, L., Outten, S., Migliavacca, M., Bianchi, A., Rojas, R. and Cid, A. (2016). "Multi-hazard assessment in Europe under climate change." Climatic Change, Vol. 137, pp. 105-119. https://doi.org/10.1007/s10584-016-1661-x
  7. Hair, J. F., Anderson, R. E., Tatham, R. L. and Black, W. C. (1998). Multivariate analysis, Prentice Hall, Englewood Cliffs, NJ.
  8. Hao, Z. and AghaKouchak, A. (2013). "Multivariate standardized drought index: A parametric multi-index model." Advances in Water Resources, Vol. 57, pp. 12-18. https://doi.org/10.1016/j.advwatres.2013.03.009
  9. Kong, Q., Guerreiro, S. B., Blenkinsop, S., Li, X. F. and Fowler, H. J. (2020). "Increases in summertime concurrent drought and heatwave in eastern China." Weather and Climate Extremes, Vol. 28, 100242. https://doi.org/10.1016/j.wace.2019.100242
  10. Korea Environment Institute (KEI) (2020). Heatwave impact report (in Korean).
  11. Korea Meteorological Administration (KMA) (2018). 2018 Abnormal climate report (in Korean).
  12. Leonard, M., Westra, S., Phatak, A., Lambert, M., Van den Hurk, B., McInnes, K., Risbey, J., Schuster, S., Jakob, D. and Stafford-Smith, M. (2014). "A compound event framework for understanding extreme impacts." WIREs Climate Change, Vol. 5, No. 1, pp. 113-128. https://doi.org/10.1002/wcc.252
  13. Marin, P. G., Julio, C. J., Arturo, R. T. D. and Jose, V. N. D. (2018). "Drought and spatiotemporal variability of forest fires across Mexico." Chinese Geographical Science, Vol. 28, pp. 25-37. https://doi.org/10.1007/s11769-017-0928-0
  14. Mazdiyasni, O. and AghaKouchak, A. (2015). "Substantial increase in concurrent droughts and heatwaves in the United States." Proceedings of the National Academy of Sciences of the United States of America, PNAS, Vol. 112, No. 37, pp. 11484-11489. https://doi.org/10.1073/pnas.1422945112
  15. Min, K. H., Chung, C. H., Bae, J. H. and Cha, D. H. (2020). "Synoptic characteristics of extreme heatwaves over the Korean peninsula based on ERA interim reanalysis data." International Journal of Climatology, Vol. 40, No. 6, pp. 3179-3195. https://doi.org/10.1002/joc.6390
  16. Nogueira, J. M., Rambal, S., Barbosa, J. P. R. A. D. and Mouillot, F. (2017). "Spatial pattern of the seasonal drought/burned area relationship across Brazilian biomes: Sensitivity to drought metrics and global remote-sensing fire products." Climate, Vol. 5, No. 2.
  17. Shipley, B. (2000). Cause and correlation in biology, Cambridge University Press, Cambridge, UK.
  18. Shukla, S., Safeeq, M., AghaKouchak, A., Guan, K. and Funk, C. (2015). "Temperature impacts on the water year 2014 drought in California." Geophysical Research Letters, Vol. 42, No. 6, pp. 4384-4393. https://doi.org/10.1002/2015GL063666
  19. Sutanto, S. J., Vitolo, C., Napoli, C. D., D'Andread, M. and Van Lanena, H. A. J. (2020). "Heatwaves, droughts, andfires: Exploring compound and cascading dry hazards at the pan-European scale." Environment International, Vol. 134, 105276. https://doi.org/10.1016/j.envint.2019.105276
  20. Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y. and Lauro, C. (2005). "PLS path modeling." Computational Statistics and Data Analysis, Vol. 48, No. 1, pp. 159-205. https://doi.org/10.1016/j.csda.2004.03.005
  21. Urbieta, I. R., Zavala, G., Bedia, J., Gutierrez, J. M., San MiguelAyanz, J., Camia, A., Keeley, J. E. and Moreno, J. M. (2015). "Fire activity as a function of fire-weather seasonal severity and antecedent climate across spatial scales in southern Europe and pacific western USA." Environmental Research Letters, Vol. 10, 114013. https://doi.org/10.1088/1748-9326/10/11/114013
  22. Yeh, S. W., Won, Y. J., Hong, J. S., Lee, K. J., Kwon, M. H., Seo, K. H. and Ham, Y. G. (2018). "The record-breaking heat wave in 2016 over South Korea and its physical mechanism." Monthly Weather Review, Vol. 146, No. 5, pp. 1463-1474. https://doi.org/10.1175/MWR-D-17-0205.1
  23. Zaitchik, B. F., Macalady, A. K., Bonneau, L. R. and Smith, R. B. (2006). "Europe's 2003 heat wave: A satellite view of impacts and land-atmosphere feedbacks." International Journal of Climatology, Vol. 26, No. 6, pp. 743-769. https://doi.org/10.1002/joc.1280
  24. Zscheischler, J. and Seneviratne, S. I. (2017). "Dependence of drivers affects risks associated with compound events." Science Advances, Vol. 3, No. 6, 1700263.