DOI QR코드

DOI QR Code

A Study on the Mechanical Properties and Moisture Control Performance of Diatomite filled Olefin Foams

규조토를 함유한 올레핀계 폼의 기계적 물성 및 수분 제어 성능에 관한 연구

  • Kim, Jae Yang (School of Chemical Engineering, Pusan National University) ;
  • Lee, Ji Eun (New project team, KIFLT) ;
  • Seong, Dong Gi (School of Chemical Engineering, Pusan National University)
  • 김재양 (부산대학교 응용화학공학부) ;
  • 이지은 (한국신발피혁연구원) ;
  • 성동기 (부산대학교 응용화학공학부)
  • Received : 2021.03.04
  • Accepted : 2021.03.22
  • Published : 2021.03.31

Abstract

Products using diatomaceous earth, which are used in various fields, are optimized for moisture absorption, but have problems such as high hardness, powder flying, and rough surface feel. To improve this, an olefin-based foam having low hardness and high elasticity was prepared by adding an excessive amount of inorganic material using EVA (Ethylene vinyl acetate) having low hardness and excellent elasticity. Diatomaceous earth was added to impart moisture absorption characteristics of the foam, and the moisture absorption/drying characteristics showed a moisture absorption rate of about 10 to 15% and a moisture drying rate of 10 to 70% depending on the content of the diatomaceous earth. Through this study, it was possible to manufacture a water-absorbing olefin-based foam with diatomaceous earth added, and it was confirmed that the diatomaceous earth added to the foam had a great influence on water absorption and dissipation due to its microstructure and characteristics.

여러 방면에서 사용되는 규조토를 이용한 제품은 수분흡수에 최적화되어 있지만 고경도, 가루날림, 거친 표면 느낌 등의 문제점을 지니고 있다. 이를 개선하기 위하여 경도가 낮고 탄성이 우수한 EVA (Ethylene vinyl acetate)를 이용하여 과량의 무기물을 첨가하여 수분 흡수 특성이 우수하면서도 저경도, 고탄성을 지니는 올레핀계 발포체를 제조하였다. 발포체의 수분 흡수 특성을 부여하기 위해 규조토를 첨가하였으며, 수분 흡수/건조 특성은 규조토의 함유량에 따라 약 10~15%의 수분 흡수율과 10~70%의 수분 건조율을 나타내었다. 본 연구를 통해 규조토가 첨가된 수분흡수형 올레핀계 발포체 제조가 가능하였으며, 발포체에 첨가된 규조토는 그 미세구조와 특징으로 인해 수분 흡수와 발산에 큰 영향을 끼친다는 것이 확인되었다.

Keywords

References

  1. Jin-Tae Kim, Woo-Jung, Wonho Kim, Byung Hyun Ahn, Elastomer, 36, (2001)
  2. Sung-Seen Choi, Jong Woo Bae, Jung Soo Kim, Dong-Hun Han, Elastomers and composites, 51, (2016)
  3. Klempner. D. Frisch, K. C., Handbook of polymeric foams and foam technology
  4. R. verdejo and N.J. Mills, Polymer Testing, Klempner. D. Frisch, K. C., Handbook of polymeric foams and foam technology, (2004)
  5. K-W. Park, G-H. Kim, Polymer Science, 112, (2009)
  6. Chong Min Koo, Korean Chem. Eng., 46, (2008)
  7. Andrew J. Alverson, Jamie J. Cannone, Robin R. Gutell, Edward C. Theriot, Phycological Society of Ameriaca, 42, (2006)
  8. Eui Kyoung Jang, Hyun Kyeong Shin, Seung Pil Pack, Korean Society for Biontechnology and Bioengineering Journal, 29, (2014)
  9. Alex M. Henderson, AT Plastic INC. Copolymers: A General Review, (1993)
  10. Myung Jin Choi, Dong Ho Kim, Gu Ni Kim, Journal of Adhesion and Interface, 9, (2008)
  11. Ying Zhang, Marianna Kontopoulou, Mahmoud Ansari, Savvas Hatzikiriakos, Chul B. Park, Polymer engineering and science, (2011)
  12. Yapeng mao, Rongrong qi, Polymer science, 109, (2008)
  13. Weili Wu, Songyan Cong, "Modified diatomite forms in the rubber nanocomposites", Journal of thermoplastic composite materials (2018)
  14. Wen-Tien Tsai, Chi-Wei Lai, Kuo-Jong Hsien, Journal of colloid and interface science, 297, (2006)
  15. Parkinson, J. R. Gordon, Trends biotechnol, 17, (1999)
  16. Paul Treguer, David M. Nelson, Aleido J. Van Bennekom, David J. Demaster, Aude Levnaert, Bernard Queguiner, Science, 268 (1995)