DOI QR코드

DOI QR Code

Preparing a Body Temperature Checking Material Using Polydiacetylene

Polydiacetylene을 이용한 체온 측정 물질의 제조

  • Kim, Huiseon (Department of Cosmetics and Biotechnology, Semyung University) ;
  • Heo, Eunjin (Department of Cosmetics and Biotechnology, Semyung University) ;
  • Shin, Min Jae (Department of Cosmetics and Biotechnology, Semyung University)
  • 김희선 (세명대학교 화장품생명공학과) ;
  • 허은진 (세명대학교 화장품생명공학과) ;
  • 신민재 (세명대학교 화장품생명공학과)
  • Received : 2021.01.19
  • Accepted : 2021.03.19
  • Published : 2021.04.10

Abstract

Considering the current COVID 19 pandemic, herein, we developed a material that can be used to fabricate a device for checking the body temperature of a person who has been exposed to influenza or corona virus. This material was formed by mixing pluronic F127 (F127) with a polydiacetylene (PDA) vesicle, which was formed with 10,12-pentacosadiynoic acid. The color of the system started to change from blue to light purple at 37 ℃, finally turning reddish at 40 ℃. Thus, the developed material can be used to detect changes in body temperature, and thus, detect signs of fever. The mixing ratio of the PDA vesicle and F127 was an important factor for controlling the temperature at which the color change started. The results showed that the color change accompanied by the separation of the PDA vesicle with F127. We believe that this phenomenon plays an important role in reducing the conjugation length in the double and triple bond of PDA.

Keywords

References

  1. M. Jung, S. Jeon, and J. Bae, Scalable and facile synthesis of stretchable thermoelectric fabric for wearable self-powered temperature sensors, RSC Adv., 8, 39992-39999 (2018). https://doi.org/10.1039/c8ra06664g
  2. Y.-F. Wang, T. Sekine, Y. Takeda, K. Yokosawa, H. Matsui, D. Kumaki, T. Shiba, T. Nishikawa, and S. Tokito, Fully printed PEDOT:PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring, Sci. Rep., 10, 2467 (2020). https://doi.org/10.1038/s41598-020-59432-2
  3. C. Xu, Y. Yang, and W. Gao, Skin-interfaced sensors in digital medicine: From materials to applications, Matter, 2, 1414-1445 (2020). https://doi.org/10.1016/j.matt.2020.03.020
  4. X. Gong, L. Zhang, Y. Huang, S. Wang, G. Pan, and L. Li, Directly writing flexible temperature sensor with graphene nanoribbons for disposable healthcare devices, RSC Adv., 10, 22222-22229 (2020). https://doi.org/10.1039/d0ra02815k
  5. H. Ota, M. Chao, Y. Gao, E. Wu, L.-C. Tai, K. Chen, Y. Matsuoka, K. Iwai, H. M. Fahad, W. Gao, H. Y. Y. Nyein, L. Lin, and A. Javey, 3D printed "earable" smart devices for real-time detection of core body temperature, ACS Sens., 2, 990-997 (2017). https://doi.org/10.1021/acssensors.7b00247
  6. S. Majumder, T. Mondal, and M. J. Deen, Wearable sensors for remote health monitoring, Sensors, 17, 130 (2017). https://doi.org/10.3390/s17010130
  7. X. Chen, G. Zhou, X. Peng, and J. Yoon, Biosensors and chemosensors based on the optical responses of polydiacetylenes, Chem. Soc. Rev., 41, 4610-4630 (2012). https://doi.org/10.1039/c2cs35055f
  8. S. Lee, J.-Y. Kim, X. Chen, and J. Yoon, Recent progress in stimuli-induced polydiacetylenes for sensing temperature, chemical and biological targets, Chem. Commun., 52, 9178-9196 (2016). https://doi.org/10.1039/c6cc03584a
  9. J. Seo, C. Kantha, J. F. Joung, S. Park, R. Jelinek, and J.-M. Kim, Covalently linked perylene diimide-polydiacetylene nanofibers display enhanced stability and photocurrent with reversible FRET phenomenon, Small, 15, 1901342 (2019). https://doi.org/10.1002/smll.201901342
  10. D.-H. Park, J. M. Heo, W. Jeong, Y. H. Yoo, B. J. Park, and J.-M. Kim, Smartphone-based VOC sensor using colorimetric polydiacetylenes, ACS Appl. Mater. Interfaces, 10, 5014-5021 (2018). https://doi.org/10.1021/acsami.7b18121
  11. X. Chen and J. Yoon, A thermally reversible temperature sensor based on poydiacetylene: Synthesis and thermochromic properties, Dyes Pigm., 89, 194 (2011). https://doi.org/10.1016/j.dyepig.2009.12.015
  12. I. S. Park, H. J. Park, W. Jeong, J. Nam, Y. Kang, K. Shin, H. Chung, and J.-M. Kim, Low temperature thermochromic polydiacetylenes: Design, colorimetric properties, and nanofiber formation, Macromolecules, 49, 1270 (2016). https://doi.org/10.1021/acs.macromol.5b02683
  13. A. Saenjaiban, T. Singtisan, P. Suppakul, K. Jantanasakulwong, W Punyodom, and P. Rachtanapun, Novel color change film as a time-temperature indicator using polydiacetylene/silver nanoparticles embedded in carboxymethyl cellulose, Polymers, 12, 2306 (2020). https://doi.org/10.3390/polym12102306
  14. M. J. Shin and J. S. Shin, Chromatic response of cationic polydiacetylene vesicles induced by permeation of target compound, J. Appl. Polym. Sci., 137, 49355 (2020). https://doi.org/10.1002/app.49355
  15. Y. J. Shin, M. J. Shin, and J. S. Shin, Permeation-induced chromatic change of a polydiacetylene vesicle with nonionic surfactant, Colloid Surf. A, 520, 459-466 (2017). https://doi.org/10.1016/j.colsurfa.2017.02.014
  16. M. J. Shin, Y. J. Kim, and J.-D. Kim, Chromatic response of polydiacetylene vesicle induced by the permeation of methotrexate, Soft Matter, 11, 5037-5043 (2015). https://doi.org/10.1039/c5sm00925a
  17. M. J. Shin and J.-D. Kim, Reversible chromatic response of polydiacetylene derivative vesicles in D2O solvent, Langmuir, 32, 882-888 (2016). https://doi.org/10.1021/acs.langmuir.5b03945
  18. M. J. Shin and J. S. Shin, Effect of ethanol on the color transition of the polydiacetylene vesicle of 10,12-pentacosadiynoic acid for butylamine detection, J. Appl. Polym. Sci., 136, 47688 (2019). https://doi.org/10.1002/app.47688
  19. N. Han, H. J. Woo, S. E. Kim, S. Jung, M. J. Shin, M. Kim, and J. S. Shin, Systemized organic functional group controls in polydiacetylenes and their effects on color changes, J. Appl. Polym. Sci., 134, 45011 (2017). https://doi.org/10.1002/app.45011
  20. K. Yoo, S. Kim, N. Han, G. E. Kim, M. J. Shin, J. S. Shin, and M. Kim, Stepwise blue-red-yellow color change of a polydiace- tylene sensor through internal and external transitions, Dyes Pigm., 149, 242-245 (2018). https://doi.org/10.1016/j.dyepig.2017.10.005
  21. M. J. Shin and J.-D. Kim, Chromatic reversibility of multilayered polydiacetylene cast film, J. Ind. Eng. Chem., 35, 211-216 (2016). https://doi.org/10.1016/j.jiec.2015.12.036
  22. M. J. Shin, D. H. Byun, and J.-D. Kim, Sensitivity limitation of the sensor fabricated with polydiacetylene, J. Ind. Eng. Chem., 23, 279-284 (2015). https://doi.org/10.1016/j.jiec.2014.08.029
  23. M. Kim, Y. J. Shin, M. J. Shin, and J. S. Shin, Gas-sensor fabrication by a layer‐by‐layer technique using polydiacetylene, J. Appl. Polym. Sci., 134, 44997 (2017).
  24. M. Kim, Y. J. Shin, S. W. Hwang, M. J. Shin, and J. S. Shin, Chromatic detection of glucose using polymerization of diacetylene vesicle, J. Appl. Polym. Sci., 135, 46394 (2018). https://doi.org/10.1002/app.46394
  25. M. Kim, N. Han, M. J. Shin, M. Kim, and J. S. Shin, Effect of head structure on ATP detection in polydiacetylene systems, Macromol. Res., 28, 62-66 (2020). https://doi.org/10.1007/s13233-020-8001-8
  26. M. J. Shin and J. S. Shin, A molecularly imprinted polymer undergoing a color change depending on the concentration of bisphenol A, Microchim. Acta, 187, 44 (2020). https://doi.org/10.1007/s00604-019-4050-0