DOI QR코드

DOI QR Code

Optimization of the Emission Spectrum of Red Color in Quantum Dot-Organic Light Emitting Diodes

  • Jeong, Byoung-Seong (Graduate School of Advanced Integration of Science and Technology, Department of Hydrogen and Renewable Energy, Kyungpook National University)
  • Received : 2020.12.10
  • Accepted : 2021.02.05
  • Published : 2021.04.10

Abstract

We investigated the optimal stacked structure from the perspective of process architecture (PA) through emission spectrum analysis according to the wavelength of quantum dot (QD)-organic light-emitting diodes (OLED). We confirmed that the blue-light leakage through the QD can be minimized by increasing the QD filling density above a critical value in the red QD (R-QD) layer. In addition, when the thickness of red-color filter (R-CF) at the upper part of the R-QD increased to more than 3 ㎛, the leakage of blue light through the R-CF was effectively blocked, and a very sharp emission spectrum in the red wavelength band could be obtained. According to these outstanding results, we expect that the development of QD-OLED displays with very excellent color gamut can be possibly realized.

Keywords

References

  1. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Stretchable active-matrix organic light-emitting diode display using printable elastic conductors, Nat. Mater., 8, 494-499 (2009). https://doi.org/10.1038/nmat2459
  2. D. Yin, J. Feng, R. Ma, Y. Liu, Y. Zhang, X. Zhang, Y. Bi, Q. Chen, and H. Sun, Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process, Nat. Commun., 7, 1-7 (2016).
  3. H. Shin, S. Kim, J. Lee, H. Lee, H. Jung, and J. Park, Research trends in organic light emitting diode, Appl. Chem. Eng., 26, 381-388 (2015). https://doi.org/10.14478/ace.2015.1077
  4. P. Kathirgamanathan, L. M. Bushby, M. Kumaraverl, S. Ravichandran, and S. Surendrakumar, Electroluminescent organic and quantum dot LEDs: The state of the art, J. Disp. Tech., 11, 480-493 (2015). https://doi.org/10.1109/JDT.2015.2418279
  5. H. Zhang, Q. Su, and S. Chen, Recent progress in the device architecture of white quantum-dot light-emitting diodes, J. Inf. Disp., 20, 169-180 (2019). https://doi.org/10.1080/15980316.2019.1650129
  6. J. Yoo, W. Kim, S. Park, and J. Kim, Study on sonochemical synthesis and characterization of CdTe quantum dot, Appl. Chem. Eng., 28, 571-575 (2017). https://doi.org/10.14478/ace.2017.1078
  7. J. Lim, M. Park, W.Bae, D. Lee, S. Lee, C. Lee, K. Char Lim, Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots, ACS Nano, 7, 9019-9026 (2013). https://doi.org/10.1021/nn403594j
  8. K. Kim, H. Jung, W. Bae and C. Lee, Effect of solvents and pressure on the performance of quantum dot light emitting diodes fabricated with soft-contact transfer printing, Soc. Inf. Disp. Dig., 49, 1643-1646 (2018).
  9. H. Kim, M. Shin, and Y. Kim, Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter, Jpn. J. Appl. Phys., 55, 08RF01 (2016) https://doi.org/10.7567/JJAP.55.08RF01
  10. J. Manders, L. Qian, A. Titov, J. Hyvonen, J. Tokarz-Scott, K. P. Acharya, Y. Yang, W. Cao, Y. Zheng, J. Xue, and P. H. Holloway, High efficiency and ultra-wide color gamut quantum dot LEDs for next generation displays, J. Soc. Inf. Disp., 23/11, 523-528 (2015)
  11. P. Kathirgamanathan, M. Kumaraverl, N. Bramananthan, and S. Ravichandran, High efficiency and highly saturated red emitting inverted quantum dot devices (QLEDs): Optimisation of their efficiencies with low temperature annealed sol-gel derived ZnO as the electron transporter and a novel high mobility hole transporter and thermal annealing of the devices, J. Mater. Chem. C, 6, 11622-11644 (2018). https://doi.org/10.1039/C8TC03676D
  12. M. Mesta1, M. Carvelli, R. J. de Vries, H. van Eersel, J. J. M. van der Holst, M. Schober, M. Furno, B. Lussem, K. Leo, P. Loebl, R. Coehoorn and P. A. Bobbert, Molecular-scale simulation of electroluminescence in a multilayer white organic light-emitting diode, Nat. Mater., 12, 652-658 (2013). https://doi.org/10.1038/nmat3622
  13. SETFOS, accessed Nov 15, 2020, https://www.fluxim.com/setfos-intro.
  14. J. J. M. van der Holst, F. W. A. van Oost, R. Coehoorn, and P. A. Bobbert, Monte carlo study of charge transport in organic sandwich-type single-carrier devices: Effects of coulomb interactions, Phys. Rev. B, 83, 085206-1-085206-13 (2011). https://doi.org/10.1103/physrevb.83.085206
  15. M. Choi, J. Yang, T. Hyeon and D. Kim, Flexible quantum dot light-emitting diodes for next-generation displays, npj Flex. Electron., 10, 1-14 (2018).
  16. Rec. 2020, last modified Nov 12, 2020, accessed Nov 30, https://ko.wikipedia.org/wiki/Rec._2020.
  17. S. Choi, S. Kim, J. Oh, and C. Yoon, Display high color gamut fluorescent materials technology, Ceramist, 21, 55-63 (2018). https://doi.org/10.31613/ceramist.2018.21.1.05