DOI QR코드

DOI QR Code

9-Arylated Carbazole을 주리간드로 사용하는 Heteroleptic Iridium(III) 착물의 합성과 분광학적 특성

Synthesis and Photoluminescence Properties of Heteroleptic 9-Arylated Carbazole Iridium(III) Complexes

  • 오세환 (충남대학교 자연과학대학 화학과) ;
  • 염을균 (충남대학교 자연과학대학 화학과) ;
  • 김영훈 (충남대학교 자연과학대학 화학과) ;
  • 임영재 (충남대학교 자연과학대학 화학과) ;
  • 허정석 (충남대학교 자연과학대학 화학과) ;
  • 김영준 (충남대학교 자연과학대학 화학과)
  • Oh, Se Hwan (Department of Chemistry, Chungnam National University) ;
  • Yum, Eul Kgun (Department of Chemistry, Chungnam National University) ;
  • Kim, Younghoon (Department of Chemistry, Chungnam National University) ;
  • Im, Yung-Jae (Department of Chemistry, Chungnam National University) ;
  • Heo, Jungseok (Department of Chemistry, Chungnam National University) ;
  • Kim, Yeong-Joon (Department of Chemistry, Chungnam National University)
  • 투고 : 2021.02.17
  • 심사 : 2021.03.15
  • 발행 : 2021.04.10

초록

Cu(I) 촉매를 사용하여 열반응을 이용한 N-heteroaryl carbazole을 합성하였고 이를 새로운 heteroleptic Ir(III) 착물 합성을 위한 주리간드로 사용하였다. 새로운 Ir(III) 착물은 일반적인 Ir(III) 착물이 가지는 5각 고리가 아닌 6각 고리를 주리간드와 Ir 금속 결합 사이에서 형성하는 것으로 X-ray 단결정구조를 통해 확인할 수 있었다. 합성한 Ir(III) 착물들은 좋은 인광 특성을 나타내므로 OLED 발광층 재료물질로의 가능성을 보여주었다. 주리간드와 보조리간드 변화에 따른 분광학적 특성을 고찰하였는데 PL 최대 발광 파장(λmax) 변화는 보조리간드가 Ir 금속과 더 강한 결합을 만들수록 단파장 쪽으로 이동하는 것을 발견하였다. 또한, 주리간드에 대해서는 Ir-N 결합을 만드는 헤테로아릴 그룹의 아로마틱고리 전자밀도가 커질수록 단파장 쪽으로 이동하는 경향이 있는 것을 알 수 있었다.

N-Heteroaryl carbazoles were synthesized with thermal heating in the presence of Cu(I) catalyst and used as main ligands for the preparation of heteroleptic Ir(III) complexes. In these Ir(III) complexes, 6-membered ring structures of Ir-ligand chelation were found by single crystal X-ray diffraction. The blue shift of photoluminescence for Ir(III) complexes was observed in the case of the strong bond formation between Ir and ancillary ligands. It also has been clearly shown that the higher electron density of heteroaryl aromatic ring influenced shorter maximum photoluminescence wavelength (λmax) of Ir(III) complexes. Since the new Ir(III) complexes showed good phosphorescent emission, they could be potentially used as OLED materials in the emission Layer.

키워드

참고문헌

  1. S.-J. Zou, Y. Shen, F.-M. Xie, J.-D. Chen, Y.-Q. and Li, J.-X. Tang, Recent advances in organic light-emitting diodes: Toward smart lighting and displys, Mater. Chem. Front., 4, 788-820 (2020). https://doi.org/10.1039/c9qm00716d
  2. M. Aleksanrova, Specifics and challenges to flexible organic light-emitting devices, Adv. Mater. Sci. Eng., 2016, Article ID 4081697 (2016).
  3. Y. G. Ma, H. Y. Shen, and C. M. Che, Electroluminescense from triplet metal-ligand chrage-transfer excited state of transition metal complexes, Synth. Met., 94, 245 (1998). https://doi.org/10.1016/S0379-6779(97)04166-0
  4. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Highly efficient phosphorescent emissionfrom organicelectroluminescent device, Nature, 395, 151-154 (1998). https://doi.org/10.1038/25954
  5. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organiclight emitting device, J. Appl. Phys., 90, 5048 (2001). https://doi.org/10.1063/1.1409582
  6. T. Yu, L. Liu, Z. Xie, and Y. Ma. Progress in small-molecule luminiscent materials for organic light-emitting diodes, Sci. China Chem., 58, 907-915 (2015). https://doi.org/10.1007/s11426-015-5409-7
  7. H. Xu, R. Chen, Q. Sun, W. Lai, Q. Su, W. Huang, and X. Liu, Recent progress in metal-organic complexes for optoelectronic applications, Chem. Soc. Rev., 43, 3259 (2014). https://doi.org/10.1039/c3cs60449g
  8. H. Shin, J.-H. Lee, C.-K. Moon, J.-S. Huh, B. Sim, and J.-J. Kim, Sky-blue phosphorescent OLED with 34.1% external quantum efficiency using a low refractive index electron transporting layer, Adv. Mater., 28, 4920-4925 (2016). https://doi.org/10.1002/adma.201506065
  9. A. R. B.M. Yusoff, A. J. Huckba, and M. K. Nazeeruddin, Phosphorescent neutral iridium (III) complexes for organic light-emitting diodes, Top. Curr. Chem., 375, 39 (2017), https://doi.org/10.1007/s41061-017-0126-7
  10. N. Okamura, K. Ishiguro, T. Maeda, and S. Yagi, Luminescent properties of novel bis-cyclometalated iridium(III) complex bearing a phosphine oxide-appended diketonate ligand for solution-processed multilayer OLEDs, Chem. Lett., 46, 1086-1089 (2017). https://doi.org/10.1246/cl.170317
  11. Z. Chen, H. Zhang, D. Wen, W. Wu, Q. Zeng, S. Chen, and W.-Y. Wong, A simple and efficient approach toward deep-red to near-infrared-emitting iridium(III) complexes for organic light-emitting diodes with external quantum efficiencies of over 10%, Chem. Sci., 11, 2342-2349 (2020). https://doi.org/10.1039/c9sc05492h
  12. P. Ledwon, Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications, Org. Electron., 75, 105422 (2019). https://doi.org/10.1016/j.orgel.2019.105422
  13. B. Wex and B. R. Kaafarani, Perspective on carbazole-based organic compounds as emitters and hosts in TADF applications, J. Mater. Chem. C, 5, 8622-8653 (2017). https://doi.org/10.1039/C7TC02156A
  14. M. Hong, M. K. Ravva, P. Winget, and J.-L. Bredas, Effect of substituents on the electronic structure and degradation process in carbazole derivatives for blue OLED host materials, Chem. Mater., 5791-5798 (2016).
  15. C. S. Oh, D. S. Pereira, S. H. Han, H.-J. Park, H. F. Higginbotham, A. P. Monkman, and J. Y. Lee, Dihedral angle control of blue thermally activated delayed fluorescent emitters through donor substitution position for efficient reverse intersystem crossing, ACS Appl. Mater. Interfaces, 10, 35420-3542 (2018). https://doi.org/10.1021/acsami.8b10595
  16. J. Jayakumar, T-L. Wu, M.-J. Huang, P.-Y. Huang, T.-Y. Chou, H.-W. Lin, and C.-H. Cheng, Pyridine-carbonitrile-carbazole-based delayed fluorescence materials with highly congested structures and excellent OLED performance, ACS Appl. Mater. Interfaces, 11, 21042-21048 (2019). https://doi.org/10.1021/acsami.9b04664
  17. E. Orselli, G. S. Kottas, A. E. Konradsson, P. Coppo, R. Fro1hlich, L. De Cola, A. V. Dijken, M. Bu1chel, and H. Borner, Blue-emitting iridium complexes with substituted 1,2,4-triazole ligands? Synthesis, photophysics, and devices, Inorg. Chem., 46, 11082-11093 (2007). https://doi.org/10.1021/ic701110p
  18. S.-Y. Baek, S.-Y. Kwak, S.-T. Kim, K. Y. Hwang, H. Koo, W.-J. Son, B. Choi, S. Kim, H. Choi, and M.-H. Baik, Ancillary ligand increases the efficiency of heteroleptic Ir-based triplet emitters in OLED devices, Nat. Commun., 11, 2292 (2020). https://doi.org/10.1038/s41467-020-16091-1
  19. J. K. Kwon, J.H. Cho, Y.-S. Ryu, S. H. Oh, and E. K. Yum, N-arylation of carbazole by microwave-assisted ligand-free CuI reaction, Tetrahedron, 67, 4820-4825 (2011). https://doi.org/10.1016/j.tet.2011.05.022
  20. J. H. Cho, Y.-S. Ryu, S. H. Oh, J. K. Kwon, and E. K. Yum, Diversification of carbazole by LiCl-mediated CuI reaction, Bull. Korean Chem. Soc., 32, 2461-2464 (2011). https://doi.org/10.5012/bkcs.2011.32.7.2461
  21. F. H. Case, The preparation of hydrazidines and as-triazines related to substituted 2-cyanopyridines, J. Org. Chem., 30, 931-933 (1965). https://doi.org/10.1021/jo01014a502
  22. A. R. McDonald, M. Lutz, L. S. von Chrzanowski, G. P. M. van Klink, A. L.Spek, and G. von Koten, Probing the mer- to fac-isomerization of tris-cyclometallated homo and heteroleptic (C,N)3 iridium(III) complexes, Inorg. Chem., 47, 6681-6691 (2008). https://doi.org/10.1021/ic800169n
  23. M. Nonoyama, Benzo[h]quinolin-10-yl-N iridium(III) complexes, Bull. Chem. Soc. Jpn., 47, 767 (1974). https://doi.org/10.1246/bcsj.47.767
  24. (a) A. L. Spek, PLATON, an integrated tool for the analysis of the results of a single crystal structure determination, Acta Crystallogr. Sect. A, 46, C34 (1990).
  25. (b) A. L. Spek, PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht (1998).
  26. S. Lamansky, P. Djurovuch, O. Murpky, F. Abdel-Razzaq, H. Lee, P. E. Adachi, C. Burrows, and M. E. Thompson, Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes, J. Am. Chem. Soc., 123, 4304-4312 (2001). https://doi.org/10.1021/ja003693s
  27. M. G. Colombo, T. C. Brunold, T. Riedener, H. U. Guedel, M. Fortsch, and H.-B. Buergi, Facial tris cyclometalated Rh3+ and Ir3+ complexes: Their synthesis, structure, and optical spectroscopic properties, Inorg. Chem., 33, 545-550 (1994). https://doi.org/10.1021/ic00081a024